Bending 3D free form metal plates is a common process used in many heavy industries such as shipbuilding. The traditional method is the so-called line heating method, which is not only labor intensive but also inefficient and error-prone. This paper presents a new incremental bending method based on minimum energy principle and model-less control. First, the sheet metal is discretized into a number of strips connected through virtual springs. Next, by applying the minimum energy principle, the punching and supporting points are calculated for the strip. Then, the bended shape of the strip is computed based on the beam bending theory. This process is continued until the final shape is reached. To compensate the bending error, the computer vision-based model-less control is applied. The computer vision detects the bending error based on which additional bending steps are calculated. The new method is tested in a custom build incremental bending machine. Different metal plates are formed. For a metal plate of 1000 × 800 × 5 mm3, the average bending error is less than 3 mm. In comparison with the existing methods, the new method has a number of advantages, including simple, fast, and highly energy efficient.

References

1.
Shin
,
J. G.
, and
Woo
,
J. H.
,
2003
, “
Analysis of Heat Transfer Between the Gas Torch and the Plate for the Application of Line Heating
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
794
800
.
2.
Li
,
M. Z.
,
Cai
,
Z. Y.
,
Sui
,
Z.
, and
Yan
,
Q. G.
,
2002
, “
Multi-Point Forming Technology for Sheet Metal
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
333
338
.
3.
Liu
,
C.
,
Li
,
M.
, and
Fu
,
W.
,
2008
, “
Principles and Apparatus of Multi-Point Forming for Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
35
(
11
), pp.
1227
1233
.
4.
Peng
,
H.
,
Li
,
M.
,
Liu
,
C.
, and
Cao
,
J.
,
2013
, “
Study of Multi-Point Forming for Polycarbonate Sheet
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9
), pp.
2811
2817
.
5.
Abebe
,
M.
,
Lee
,
K.
, and
Kang
,
B.-S.
,
2016
, “
Surrogate-Based Multi-Point Forming Process Optimization for Dimpling and Wrinkling Reduction
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1
), pp.
391
403
.
6.
Luo
,
Y.
,
Yang
,
W.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Du
,
R.
,
2016
, “
Numerical Simulation and Experimental Study on Cyclic Multi-Point Incremental Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5
), pp.
1249
1259
.
7.
Shim
,
D.-S.
, and
Yang
,
D.-Y.
,
2014
, “
Multi-Stage Forming Using Optimized Preform in the Line Array Roll Set Process and Its Industrial Application
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2085
2092
.
8.
Shim
,
D. S.
,
Yang
,
D. Y.
,
Kim
,
K. H.
,
Han
,
M. S.
, and
Chung
,
S. W.
,
2009
, “
Numerical and Experimental Investigation Into Cold Incremental Rolling of Doubly Curved Plates for Process Design of a New LARS (Line Array Roll Set) Rolling Process
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
239
242
.
9.
Cai
,
Z. Y.
,
Wang
,
M.
, and
Li
,
M. Z.
,
2014
, “
Study on the Continuous Roll Forming Process of Swept Surface Sheet Metal Part
,”
J. Mater. Process. Technol.
,
214
(
9
), pp.
1820
1827
.
10.
Cai
,
Z.
, and
Li
,
M.
,
2013
, “
Principle and Theoretical Analysis of Continuous Roll Forming for Three-Dimensional Surface Parts
,”
Sci. China Technol. Sci.
,
56
(
2
), pp.
351
358
.
11.
Wang
,
D.
,
Li
,
M.
, and
Cai
,
Z.
,
2014
, “
Continuous-Forming Method for Three-Dimensional Surface Parts Combining Rolling Process With Multipoint-Forming Technology
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1
), pp.
201
207
.
12.
Wang
,
D.
,
Li
,
M.
,
Wang
,
Y.
,
Cai
,
Z.
, and
Liu
,
H.
,
2015
, “
Investigation and Improvement of 3D Rolling Process for 3D Surface Parts
,”
Int. J. Adv. Manuf. Technol.
,
78
(
1
), pp.
407
417
.
13.
Kim
,
J.
, and
Na
,
S. J.
,
2003
, “
Development of Irradiation Strategies for Free Curve Laser Forming
,”
Opt. Laser Technol.
,
35
(
8
), pp.
605
611
.
14.
Kim
,
J.
, and
Na
,
S. J.
,
2009
, “
3D Laser-Forming Strategies for Sheet Metal by Geometrical Information
,”
Opt. Laser Technol.
,
41
(
6
), pp.
843
852
.
15.
Seong
,
W.-J.
,
Jeon
,
Y.-C.
, and
Na
,
S.-J.
,
2013
, “
Ship-Hull Plate Forming of Saddle Shape by Geometrical Approach
,”
J. Mater. Process. Technol.
,
213
(
11
), pp.
1885
1893
.
16.
Shen
,
H.
,
Zheng
,
Y.
,
Wang
,
H.
, and
Yao
,
Z.
,
2016
, “
Heating Position Planning in Laser Forming of Single Curved Shapes Based on Probability Convergence
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
091003
.
17.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann.-Manuf. Technol.
,
54
(
2
), pp.
88
114
.
18.
Jackson
,
K.
, and
Allwood
,
J.
,
2009
, “
The Mechanics of Incremental Sheet Forming
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1158
1174
.
19.
Behera
,
A. K.
,
Lu
,
B.
, and
Ou
,
H.
,
2016
, “
Characterization of Shape and Dimensional Accuracy of Incrementally Formed Titanium Sheet Parts With Intermediate Curvatures Between Two Feature Types
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5
), pp.
1099
1111
.
20.
Behera
,
A. K.
,
Lauwers
,
B.
, and
Duflou
,
J. R.
,
2002
, “
Advanced Feature Detection Algorithms for Incrementally Formed Sheet Metal Parts
,”
Trans. Nonferrous Metals Soc. China
,
22
, pp.
s315
s322
.
21.
Eyckens
,
P.
,
Belkassem
,
B.
,
Henrard
,
C.
,
Gu
,
J.
,
Sol
,
H.
,
Habraken
,
A. M.
,
Duflou
,
J. R.
,
Van Bael
,
A.
, and
Van Houtte
,
P.
,
2011
, “
Strain Evolution in the Single Point Incremental Forming Process: Digital Image Correlation Measurement and Finite Element Prediction
,”
Int. J. Mater. Form.
,
4
(
1
), pp.
55
71
.
22.
Ben Ayed
,
L.
,
Robert
,
C.
,
Delamézière
,
A.
,
Nouari
,
M.
, and
Batoz
,
J. L.
,
2014
, “
Simplified Numerical Approach for Incremental Sheet Metal Forming Process
,”
Eng. Struct.
,
62–63
, pp.
75
86
.
23.
Behera
,
A. K.
,
Lauwers
,
B.
, and
Duflou
,
J. R.
,
2014
, “
Tool Path Generation Framework for Accurate Manufacture of Complex 3D Sheet Metal Parts Using Single Point Incremental Forming
,”
Comput. Ind.
,
65
(
4
), pp.
563
584
.
24.
Luo
,
Y.
,
He
,
K.
, and
Du
,
R.
,
2010
, “
A New Sheet Metal Forming System Based on the Incremental Punching—Part 1: Modeling and Simulation
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5
), pp.
481
491
.
25.
Luo
,
Y.
,
He
,
K.
, and
Du
,
R.
,
2010
, “
A New Sheet Metal Forming System Based on Incremental Punching—Part 2: Machine Building and Experiment Results
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5
), pp.
493
506
.
26.
Li
,
J.
,
He
,
K.
,
Wei
,
S.
,
Dang
,
X.
, and
Du
,
R.
,
2014
, “
Modeling and Experimental Validation for Truncated Cone Parts Forming Based on Water Jet Incremental Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9
), pp.
1691
1699
.
27.
Wang
,
J.
,
Verma
,
S.
,
Alexander
,
R.
, and
Gau
,
J.-T.
,
2008
, “
Springback Control of Sheet Metal Air Bending Process
,”
J. Manuf. Process.
,
10
(
1
), pp.
21
27
.
28.
Dadras
,
P.
, and
Majlessi
,
S. A.
,
1982
, “
Plastic Bending of Work Hardening Materials
,”
J. Eng. Ind.
,
104
(
3
), pp.
224
230
.
29.
Hosford
,
W.
, and
Caddell
,
R.
,
2011
,
Metal Forming-Mechanics and Metallurgy
,
Cambridge University Press
,
New York
.
30.
Yin
,
S.
,
Li
,
X.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2015
, “
Data-Based Techniques Focused on Modern Industry: An Overview
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
657
667
.
31.
Hou
,
Z.
, and
Jin
,
S.
,
2011
, “
A Novel Data-Driven Control Approach for a Class of Discrete-Time Nonlinear Systems
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1549
1558
.
32.
Zhang
,
G.
,
Wei
,
Z.
, and
Li
,
X.
,
2003
, “
3D Double-Vision Inspection Based on Structured Light
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
617
623
.
You do not currently have access to this content.