Viscoelastic polymer solutions have been extensively utilized in inkjet printing for a variety of biomedical applications. The pinch-off of viscoelastic jets is a key step toward the generation of droplets in inkjet printing. This complex process is governed by the interplay of four stresses, including inertial stress, capillary stress, viscous stress, and elastic stress. Depending on polymer solution properties and process conditions, four types of pinch-off phenomenon were observed during inkjetting of viscoelastic alginate solutions. In this study, material properties of alginate solutions with different concentrations have been characterized, and three dimensionless numbers (Ohnesorge number Oh, Deborah number De, and Weber number We) have been proposed to analyze different pinch-off behaviors. The phase diagram in terms of these three dimensionless numbers has been constructed to classify the regimes for different pinch-off types during inkjetting of viscoelastic alginate solutions. It is found that (1) at low De and Oh, the capillary stress is mainly balanced by the inertial stress, resulting in front pinching. (2) At medium De and low Oh, with the increase of We, the pinch-off type may change from front pinching to hybrid pinching to exit pinching. (3) At low Oh and high De, the capillary stress is mainly balanced by the elastic stress, resulting in exit pinching. (4) At high Oh and De, the viscoelastic effect is dominant. With the increase of We, middle pinching turns to be exit pinching due to the increase in the initial ligament diameter near the forming droplet.

References

1.
Xu
,
C.
,
Zhang
,
Z.
,
Fu
,
J.
, and
Huang
,
Y.
,
2017
, “
Study of Pinch-off Locations During Drop-on-Demand Inkjet Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
33
(
20
), pp.
5037
5045
.
2.
Tirtaatmadja
,
V.
,
McKinley
,
G. H.
, and
Cooper-White
,
J. J.
,
2006
, “
Drop Formation and Breakup of low Viscosity Elastic Fluids: Effects of Molecular Weight and Concentration
,”
Phys. Fluids
,
18
(
4
), p.
043101
.
3.
Vadillo
,
D.
,
Tuladhar
,
T.
,
Mulji
,
A.
,
Jung
,
S.
,
Hoath
,
S.
, and
Mackley
,
M.
,
2010
, “
Evaluation of the Inkjet Fluid’s Performance Using the “Cambridge Trimaster” Filament Stretch and Break-up Device
,”
J. Rheol.
,
54
(
2
), pp.
261
282
.
4.
Ardekani
,
A.
,
Sharma
,
V.
, and
McKinley
,
G.
,
2010
, “
Dynamics of Bead Formation, Filament Thinning and Breakup in Weakly Viscoelastic Jets
,”
J. Fluid Mech.
,
665
, pp.
46
56
.
5.
Oliveira
,
M. S.
, and
McKinley
,
G. H.
,
2005
, “
Iterated Stretching and Multiple Beads-on-a-String Phenomena in Dilute Solutions of Highly Extensible Flexible Polymers
,”
Phys. Fluids
,
17
(
7
), p.
071704
.
6.
Anna
,
S. L.
, and
McKinley
,
G. H.
,
2001
, “
Elasto-capillary Thinning and Breakup of Model Elastic Liquids
,”
J. Rheol.
,
45
(
1
), pp.
115
138
.
7.
Bhat
,
P. P.
,
Appathurai
,
S.
,
Harris
,
M. T.
,
Pasquali
,
M.
,
McKinley
,
G. H.
, and
Basaran
,
O. A.
,
2010
, “
Formation of Beads-on-a-String Structures During Break-up of Viscoelastic Filaments
,”
Nat. Phys.
,
6
(
8
), pp.
625
631
.
8.
Clasen
,
C.
,
Eggers
,
J.
,
Fontelos
,
M. A.
,
Li
,
J.
, and
McKinley
,
G. H.
,
2006
, “
The Beads-on-String Structure of Viscoelastic Threads
,”
J. Fluid Mech.
,
556
, pp.
283
308
.
9.
Clasen
,
C.
,
Bico
,
J.
,
Entov
,
V.
, and
McKinley
,
G.
,
2009
, “
‘Gobbling Drops’: the Jetting–Dripping Transition in Flows of Polymer Solutions
,”
J. Fluid Mech.
,
636
, pp.
5
40
.
10.
Entov
,
V.
, and
Hinch
,
E.
,
1997
, “
Effect of a Spectrum of Relaxation Times on the Capillary Thinning of a Filament of Elastic Liquid
,”
J. Non-Newtonian Fluid Mech.
,
72
(
1
), pp.
31
53
.
11.
Zhang
,
Z.
,
Xiong
,
R.
,
Mei
,
R.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Time-resolved Imaging Study of Jetting Dynamics During Laser Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
31
(
23
), pp.
6447
6456
.
12.
Morrison
,
N. F.
, and
Harlen
,
O. G.
,
2010
, “
Viscoelasticity in Inkjet Printing
,”
Rheol. Acta
,
49
(
6
), pp.
619
632
.
13.
Hoath
,
S. D.
,
Harlen
,
O. G.
, and
Hutchings
,
I. M.
,
2012
, “
Jetting Behavior of Polymer Solutions in Drop-on-Demand Inkjet Printing
,”
J. Rheol.
,
56
(
5
), pp.
1109
1127
.
14.
Zhang
,
Z.
,
Xiong
,
R.
,
Corr
,
D. T.
, and
Huang
,
Y.
,
2016
, “
Study of Impingement Types and Printing Quality During Laser Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
32
(
12
), pp.
3004
3014
.
15.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
, and
Markwald
,
R. R.
,
2012
, “
Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes
,”
Biotechnol. Bioeng.
,
109
(
12
), pp.
3152
3160
.
16.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
.
17.
Murphy
,
S. V.
,
Skardal
,
A.
, and
Atala
,
A.
,
2013
, “
Evaluation of Hydrogels for bio-Printing Applications
,”
J. Biomed. Mater. Res., Part A
,
101
(
1
), pp.
272
284
.
18.
Ding
,
H.
,
Tourlomousis
,
F.
, and
Chang
,
R.
,
2018
, “
A Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin-Alginate Constructs
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051014
.
19.
Nishiyama
,
Y.
,
Nakamura
,
M.
,
Henmi
,
C.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Nakagawa
,
H.
, and
Takiura
,
K.
,
2009
, “
Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-of-the-art Inkjet Technology
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
035001
.
20.
Zhang
,
Z.
,
Xu
,
C.
,
Xiong
,
R.
,
Chrisey
,
D. B.
, and
Huang
,
Y.
,
2017
, “
Effects of Living Cells on the Bioink Printability During Laser Printing
,”
Biomicrofluidics
,
11
(
3
), p.
034120
.
21.
Xu
,
H.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2019
, “
Sedimentation Study of Bioink Containing Living Cells
,”
J. Appl. Phys.
,
125
(
11
), p.
114901
.
22.
Zhang
,
Z.
,
Chai
,
W.
,
Xiong
,
R.
,
Zhou
,
L.
, and
Huang
,
Y.
,
2017
, “
Printing-induced Cell Injury Evaluation During Laser Printing of 3T3 Mouse Fibroblasts
,”
Biofabrication
,
9
(
2
), p.
025038
.
23.
Alsberg
,
E.
,
Kong
,
H.
,
Hirano
,
Y.
,
Smith
,
M.
,
Albeiruti
,
A.
, and
Mooney
,
D.
,
2003
, “
Regulating Bone Formation via Controlled Scaffold Degradation
,”
J. Dent. Res.
,
82
(
11
), pp.
903
908
.
24.
Krishnamoorthy
,
S.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2019
, “
Biofabrication of Three-Dimensional Cellular Structures Based on Gelatin Methacrylate–Alginate Interpenetrating Network Hydrogel
,”
J. Biomater. Appl.
,
33
(
8
), pp.
1105
1117
.
25.
Zhang
,
M.
,
Krishnamoorthy
,
S.
,
Song
,
H.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2017
, “
Ligament Flow During Drop-on-Demand Inkjet Printing of Bioink Containing Living Cells
,”
J. Appl. Phys.
,
121
(
12
), p.
124904
.
26.
Xu
,
C.
,
Zhang
,
Z.
,
Christensen
,
K.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Freeform Vertical and Horizontal Fabrication of Alginate-Based Vascular-Like Tubular Constructs Using Inkjetting
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061020
.
27.
Wu
,
D.
, and
Xu
,
C.
,
2018
, “
Predictive Modeling of Droplet Formation Processes in Inkjet-Based Bioprinting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101007
.
28.
McKinley
,
G. H.
,
2005
, “
Visco-elasto-capillary Thinning and Break-up of Complex Fluids
,”
Br. Soc. Rheol.
, pp.
1
48
.
29.
Ambravaneswaran
,
B.
,
Subramani
,
H. J.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
,
2004
, “
Dripping-jetting Transitions in a Dripping Faucet
,”
Phys. Rev. Lett.
,
93
(
3
), p.
034501
.
30.
Clasen
,
C.
,
Phillips
,
P. M.
, and
Palangetic
,
L.
,
2012
, “
Dispensing of Rheologically Complex Fluids: the map of Misery
,”
AIChE J.
,
58
(
10
), pp.
3242
3255
.
31.
Basaran
,
O. A.
,
Gao
,
H.
, and
Bhat
,
P. P.
,
2013
, “
Nonstandard Inkjets
,”
Annu. Rev. Fluid Mech.
,
45
, pp.
85
113
.
32.
Subramani
,
H. J.
,
Yeoh
,
H. K.
,
Suryo
,
R.
,
Xu
,
Q.
,
Ambravaneswaran
,
B.
, and
Basaran
,
O. A.
,
2006
, “
Simplicity and Complexity in a Dripping Faucet
,”
Phys. Fluids
,
18
(
3
), p.
032106
.
33.
Zhang
,
Z.
,
Jin
,
Y.
,
Yin
,
J.
,
Xu
,
C.
,
Xiong
,
R.
,
Christensen
,
K.
,
Ringeisen
,
B. R.
,
Chrisey
,
D. B.
, and
Huang
,
Y.
,
2018
, “
Evaluation of Bioink Printability for Bioprinting Applications
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041304
.
You do not currently have access to this content.