Abstract

Welding expulsion is a common problem in the resistance spot welding (RSW) process, which severely impacts weld quality and surrounding facilities. Existing expulsion control strategies are ineffective for complex and changeable welding conditions. This article studied the growth relationship between weld nugget and corona bond under two abnormal conditions: edge proximity (EP) and initial sheet gaps (IG). It is testified that expulsion would occur when the nugget size exceeds the corona bond size under EP and IG conditions. Reducing the welding current before the expulsion time can increase the size difference between the corona bond and the weld nugget, thereby delay and even eliminate the occurrence of expulsion. In this way, a novel online expulsion control strategy, named short-time current regulation (STCR), is proposed through the expulsion moment analysis of historical weld data. The effect of the new control strategy is verified with workpieces ranging from low carbon steel to ultra-high strength steel. Experimental results showed that STCR can effectively reduce the amount of expelled metal, decrease the indentation depth, and increase the nugget diameter. The method not only works well under one specific abnormal condition but also adapts to the transition between different welding conditions. This novel expulsion control strategy can help achieve the expulsion-free RSW process in mass production without frequent manual offline optimization of welding parameters.

References

1.
Zhou
,
K.
,
Shi
,
T.
, and
Cai
,
L.L.
,
2017
, “
Online Measuring the Electrical Resistivity of Molten Nugget of Stainless Steel in Resistance Spot Welding
,”
J. Mater. Process.
,
28
(
1
), pp.
109
115
.
2.
Pouranvari
,
M.
,
Abedi
,
A.
,
Marashi
,
P.
, and
Goodarzi
,
M.
,
2008
, “
Effect of Expulsion on Peak Load and Energy Absorption of Low Carbon Steel Resistance Spot Welds
,”
Sci. Technol. Weld. Join.
,
13
(
1
), pp.
39
43
.
3.
Han
,
X. L.
,
Xiao
,
F. C.
, and
Xiao
,
L.
,
2018
, “
Development and Trend of Ultrasonic Testing in Automobile Spot Welding
,”
Electr. Weld.
,
2018
(
3
), pp.
34
42
.
4.
Davies
,
A. C.
,
1993
,
The Science and Practice of Welding
, 10th ed, Vol.
2
,
Cambridge University Press
,
Cambridge
, pp.
1
64
.
5.
Senkara
,
J.
,
Zhang
,
H. Y.
, and
Hu
,
S. J.
,
2004
, “
Expulsion Prediction in Resistance Spot Welding
,”
Weld. J.
,
83
(
4
), pp.
123s
132s
.
6.
Newton
,
C. J.
,
Browne
,
D. J.
,
Thornton
,
M. C.
,
Boomer
,
D.R.
, and
Keay
,
B.F.
,
1994
, “
The Fundamentals of Resistance Spot Welding Aluminum
,”
Proceeding of AWS Sheet Metal Welding Conference VI
,
Detroit, MI
.
7.
Wei
,
P. S.
,
Wu
,
T. H.
, and
Chen
,
L. J.
,
2013
, “
Joint Quality Affected by Electrode Contact Condition During Resistance Spot Welding
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
12
), pp.
2164
2173
.
8.
Wen
,
J.
,
Wang
,
C. S.
,
Xu
,
G. C.
, and
Zhang
,
X. Q.
,
2009
, “
Real Time Monitoring Weld Quality of Resistance Spot Welding for Stainless Steel
,”
ISIJ Int.
,
49
(
4
), pp.
553
556
.
9.
Shen
,
J.
,
Zhang
,
Y. S.
, and
Lai
,
X. M.
,
2011
, “
Effect of Electrode Force on Expulsion in Resistance Spot Welding With Initial Gap
,”
Mater. Sci. Forum
,
675
(
4
), pp.
795
798
. www.scientific.net/MSF.697-698.795
10.
Deng
,
L. P.
,
Liu
,
J. H.
,
Luo
,
X. X.
, and
Ji
,
C.T.
,
2010
, “
Analysis of Spot Welding Behavior of 2024 Aluminum Alloy With Small Margin
,”
Weld. Technol.
,
39
(
6
), pp.
16
20
.
11.
Luo
,
Y.
,
Wan
,
R.
,
Xie
,
X. J.
, and
Zhu
,
Y.
,
2015
, “
Expulsion Analysis of Resistance Spot Welding on Zinc-Coated Steel by Detection of Structure-Borne Acoustic Emission Signals
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
1995
2002
.
12.
Farson
,
D. F.
,
Chen
,
J. Z.
,
Ely
,
K.
, and
Frech
,
T.
,
2013
, “
Monitoring of Expulsion in Small Scale Resistance Spot Welding
,”
Sci. Technol. Weld. Join.
,
8
(
6
), pp.
431
436
.
13.
Xia
,
Y. J.
,
Shen
,
Y.
,
Zhou
,
L.
, and
Li
,
Y. B.
,
2020
, “
Expulsion Intensity Monitoring and Modeling in Resistance Spot Welding Based on Electrode Displacement Signals
,”
ASME. J. Manuf. Sci. Eng.
,
143
(
3
), p.
031008
.
14.
Dai
,
W.
,
Li
,
D.Y.
,
Tang
,
D.
,
Jiang
,
Q.
,
Wang
,
D.
,
Wang
,
H.M.
, and
Peng
,
Y.H.
,
2021
, “
Deep Learning Assisted Vision Inspection of Resistance Spot Welds
,”
J. Manuf. Process.
,
62
(
2
), pp.
262
274
.
15.
Li
,
Y.
,
Liu
,
Z.
,
Shen
,
J.
,
Lee
,
T. H.
,
Banu
,
M.
, and
Hu
,
S. J.
,
2019
, “
Weld Quality Prediction in Ultrasonic Welding of Carbon Fiber Composite Based on an Ultrasonic Wave Transmission Model
,”
ASME. J. Manuf. Sci. Eng.
,
141
(
8
), p.
081010
.
16.
Zhang
,
Y. M.
,
Yang
,
Y. P.
,
Zhang
,
W.
, and
Na
,
S. J.
,
2020
, “
Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
11
), p.
110816
.
17.
Won
,
Y. J.
,
Cho
,
H.S.
, and
Lee
,
C. W.
,
1983
, “
A Microprocessor-Based Control System for Resistance Spot Welding Process
,”
American Control Conference IEEE
,
San Francisco, CA
,
June 22–24
, IEEE, pp.
734
738
.
18.
Mikno
,
Z.
,
Pilarczyk
,
A.
,
Korzeniowski
,
M.
,
Kustroń
,
P.
, and
Ambroziak
,
A.
,
2018
, “
Analysis of Resistance Welding Processes and Expulsion of Liquid Metal From the Weld Nugget
,”
Arch. Civil Mech. Eng.
,
18
(
2
), pp.
522
531
.
19.
Zhou
,
L.
,
Xia
,
Y. J.
,
Shen
,
Y.
,
Haselhuhn
,
A. S.
,
Wegner
,
D. M.
,
Li
,
Y.B.
, and
Carlson
,
B. E.
,
2021
, “
Comparative Study on Resistance and Displacement Based Adaptive Output Tracking Control Strategies for Resistance Spot Welding
,”
J. Manuf. Process.
,
63
(
3
), pp.
98
108
.
20.
Shim
,
Y. J.
,
Faridh
,
M.
,
Yu
,
J. Y.
, and
Rhee
,
S.
,
2015
, “
The Weldability of Dissimilar Three-Steel Sheet Using Constant Power Control Method for Resistance Spot Welding
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
230
(
5
), pp.
959
967
.
21.
Hwang
,
I. S.
,
Kang
,
M. J.
, and
Kim
,
D. C.
,
2011
, “
Expulsion Reduction in Resistance Spot Welding by Controlling of Welding Current Waveform
,”
Procedia Eng.
,
10
(
4
), pp.
2775
2781
.
22.
Xia
,
Y. J.
,
Su
,
Z. W.
,
Lou
,
M.
,
Li
,
Y. B.
, and
Carlson
,
B. E.
,
2020
, “
Online Precision Measurement of Weld Indentation in Resistance Spot Welding Using Servo Gun
,”
IEEE T. Instrum. Meas.
,
69
(
7
), pp.
4465
4475
.
23.
Mikno
,
Z.
, and
Bartnik
,
Z.
,
2016
, “
Heating of Electrodes During Spot Resistance Welding in FEM Calculations
,”
Arch. Civ. Mech. Eng.
,
16
(
1
), pp.
86
100
.
24.
Zhang
,
H. Y.
,
Hu
,
S. J.
,
Senkara
,
J.
, and
Cheng
,
S.
,
2000
, “
A Statistical Analysis of Expulsion Limits in Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
501
510
.
25.
Dickinson
,
D. W.
,
Franklin
,
J. E.
, and
Stanya
,
A.
,
1980
, “
Characterization of Spot Welding Behavior by Dynamic Electrical Parameter Monitoring
,”
Weld. J.
,
59
(
6
), pp.
170s
176s
.
You do not currently have access to this content.