Abstract

This study focuses on developing and demonstrating a straightforward workflow for identifying pathways to increase green part density in binder jetting additive manufacturing (BJAM) using statistically driven process maps. The workflow was applied to investigate the effects of process parameters toward improving green part density, with a direct application in manufacturing of Fe-Si components. Specifically, a half-factorial experimental design was used to study the effects of four key parameters—layer thickness, powder spreading speed, roller rotational speed, and binder saturation—on Fe-Si spherical powder with D50 of 32.40 µm. Relative bulk density was estimated via three methods: geometrical and mass measurements, the Archimedes test, and CT imaging. The study discusses relative bulk density as well as localized density variation in the printed parts, which is attributed to both parameter selection and inherent process variability. A regression analysis was used to reveal the significance of main effects and second-order interactions. The regression model (R2 = 0.915) was used to derive an expression for green density as a function of the parameters and had a prediction error of 0.96%. Based on the regression model, an optimized set of parameters was obtained that would maximize green density up to 57.96% for the machine and material system.

References

1.
German
,
R. M.
,
1985
,
Liquid Phase Sintering
,
Springer US
,
Boston, MA
.
2.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081019
.
3.
Gonzalez
,
J. A.
,
Mireles
,
J.
,
Lin
,
Y.
, and
Wicker
,
R. B.
,
2016
, “
Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
42
(
9
), pp.
10559
10564
.
4.
Atre
,
S.
,
Porter
,
J.
,
Batchelor
,
T.
,
Kate
,
K.
,
Bulger
,
M.
, and
Gangopadhya
,
P.
,
2016
, “
Process Parameter Optimization for Binder Jetting using 420 Stainless Steel
,”
European Congress and Exhibition on Powder Metallurgy
,
European PM Conference Proceedings
, pp.
1
6
.
5.
Asadi-Eydivand
,
M.
,
Solati-Hashjin
,
M.
,
Farzad
,
A.
, and
Abu Osman
,
N. A.
,
2016
, “
Effect of Technical Parameters on Porous Structure and Strength of 3D Printed Calcium Sulfate Prototypes
,”
Robot. Comput.-Integr. Manuf.
,
37
, pp.
57
67
.
6.
Jimenez
,
E. M.
,
Ding
,
D.
,
Su
,
L.
,
Joshi
,
A. R.
,
Singh
,
A.
,
Reeja-Jayan
,
B.
, and
Beuth
,
J.
,
2019
, “
Parametric Analysis to Quantify Process Input Influence on the Printed Densities of Binder Jetted Alumina Ceramics
,”
Addit. Manuf.
,
30
, p.
100864
.
7.
Hsu
,
T.
, and
Lai
,
W.
,
2010
, “
Manufacturing Parts Optimization in the Three-Dimensional Printing Process by the Taguchi Method
,”
J. Chin. Inst. Eng.
,
33
(
1
), pp.
121
130
.
8.
Chen
,
H.
, and
Zhao
,
Y. F.
,
2016
, “
Process Parameters Optimization for Improving Surface Quality and Manufacturing Accuracy of Binder Jetting Additive Manufacturing Process
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
527
538
.
9.
Mao
,
Y.
,
Li
,
J.
,
Li
,
W.
,
Cai
,
D.
, and
Wei
,
Q.
,
2021
, “
Binder Jetting Additive Manufacturing of 316L Stainless-Steel Green Parts With High Strength and low Binder Content: Binder Preparation and Process Optimization
,”
J. Mater. Process. Technol.
,
291
, p.
117020
.
10.
Doyle
,
M.
,
Agarwal
,
K.
,
Sealy
,
W.
, and
Schull
,
K.
,
2015
, “
Effect of Layer Thickness and Orientation on Mechanical Behavior of Binder Jet Stainless Steel 420 + Bronze Parts
,”
Proc. Manuf.
,
1
, pp.
251
262
.
11.
Shrestha
,
S.
, and
Manogharan
,
G.
,
2017
, “
Optimization of Binder Jetting Using Taguchi Method
,”
JOM
,
69
(
3
), pp.
491
497
.
12.
Miyanaji
,
H.
,
Zhang
,
S.
, and
Yang
,
L.
,
2018
, “
A New Physics-Based Model for Equilibrium Saturation Determination in Binder Jetting Additive Manufacturing Process
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
1
11
.
13.
Bai
,
Y.
, and
Williams
,
C. B.
,
2018
, “
Binder Jetting Additive Manufacturing With a Particle-Free Metal Ink as a Binder Precursor
,”
Mater. Des.
,
147
, pp.
146
156
.
14.
Gaytan
,
S. M.
,
Cadena
,
M. A.
,
Karim
,
H.
,
Delfin
,
D.
,
Lin
,
Y.
,
Espalin
,
D.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2015
, “
Fabrication of Barium Titanate by Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
41
(
5
), pp.
6610
6619
.
15.
Rishmawi
,
I.
,
Salarian
,
M.
, and
Vlasea
,
M.
,
2018
, “
Tailoring Green and Sintered Density of Pure Iron Parts Using Binder Jetting Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
508
520
.
16.
Miyanaji
,
H.
,
Zhang
,
S.
,
Lassell
,
A.
,
Zandinejad
,
A.
, and
Yang
,
L.
,
2016
, “
Process Development of Porcelain Ceramic Material With Binder Jetting Process for Dental Applications
,”
JOM
,
68
(
3
), pp.
831
841
.
17.
Miyanaji
,
H.
,
Momenzadeh
,
N.
, and
Yang
,
L.
,
2018
, “
Effect of Printing Speed on Quality of Printed Parts in Binder Jetting Process
,”
Addit. Manuf.
,
20
, pp.
1
10
.
18.
Huang
,
S.-J.
,
Ye
,
C.-S.
,
Zhao
,
H.-P.
, and
Fan
,
Z.-T.
,
2020
, “
Parameters Optimization of Binder Jetting Process Using Modified Silicate as a Binder
,”
Mater. Manuf. Process.
,
35
(
2
), pp.
214
220
.
19.
Holman
,
R. K.
,
Cima
,
M. J.
,
Uhland
,
S. A.
, and
Sachs
,
E.
,
2002
, “
Spreading and Infiltration of Inkjet-Printed Polymer Solution Droplets on a Porous Substrate
,”
J. Colloid Interface Sci.
,
249
(
2
), pp.
432
440
.
20.
Bai
,
Y.
,
Wall
,
C.
,
Pham
,
H.
,
Esker
,
A.
, and
Williams
,
C. B.
,
2019
, “
Characterizing Binder–Powder Interaction in Binder Jetting Additive Manufacturing via Sessile Drop Goniometry
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011005
.
21.
Gregorski
,
S. J.
,
1996
, “
High Green Density Metal Parts by Vibrational Compaction of Dry Powder in the Three-Dimensional Printing Process
,”
Ph.D.
,
Massachusetts Institute of Technology
.
22.
Haeri
,
S.
,
Wang
,
Y.
,
Ghita
,
O.
, and
Sun
,
J.
,
2017
, “
Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing
,”
Powder Technol.
,
306
, pp.
45
54
.
23.
Miyanaji
,
H.
,
Rahman
,
K. M.
,
Da
,
M.
, and
Williams
,
C. B.
,
2020
, “
Effect of Fine Powder Particles on Quality of Binder Jetting Parts
,”
Addit. Manuf.
,
36
, p.
101587
.
24.
Mostafaei
,
A.
,
Elliott
,
A. M.
,
Barnes
,
J. E.
,
Li
,
F.
,
Tan
,
W.
,
Cramer
,
C. L.
,
Nandwana
,
P.
, and
Chmielus
,
M.
,
2020
, “
Binder Jet 3D Printing—Process Parameters, Materials, Properties, Modeling, and Challenges
,”
Prog. Mater. Sci.
, p.
100707
.
25.
Wang
,
M.
,
2020
, “
Part Performance Measurement, Analysis and Optimization for Binder Jetting Additive Manufacturing
,”
Master’s
,
University of Waterloo
.
26.
Bas
,
J. A.
,
Calero
,
J. A.
, and
Dougan
,
M. J.
,
2003
, “
Sintered Soft Magnetic Materials. Properties and Applications
,”
J. Magn. Magn. Mater.
,
254–255
, pp.
391
398
.
27.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
.
28.
Sachs
,
E. M.
,
Cima
,
M. J.
,
Caradonna
,
M. A.
,
Grau
,
J.
,
Serdy
,
J. G.
,
Saxton
,
P. C.
,
Uhland
,
S. A.
, and
Moon
,
J.
,
2003
, “
Jetting Layers of Powder and the Formation of Fine Powder Beds Thereby
,”
US Patent 6,596,224
.
29.
Vlasea
,
M.
,
Toyserkani
,
E.
, and
Pilliar
,
R.
,
2015
, “
Effect of Gray Scale Binder Levels on Additive Manufacturing of Porous Scaffolds With Heterogeneous Properties
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
62
70
.
30.
Sheydaeian
,
E.
,
Vlasea
,
M.
,
Woo
,
A.
,
Pilliar
,
R.
,
Hu
,
E.
, and
Toyserkani
,
E.
,
2017
, “
Effect of Glycerol Concentrations on the Mechanical Properties of Additive Manufactured Porous Calcium Polyphosphate Structures for Bone Substitute Applications: Effect of Gly Concentrations
,”
J. Biomed. Mater. Res. B: Appl. Biomater.
,
105
(
4
), pp.
828
835
.
31.
Schade
,
C. T.
,
Thomas
,
F. M.
, and
Walton
,
C.
,
2014
, “
Development of Atomized Powders for Additive Manufacturing
,”
Powder Metallurgy Word Congress
,
Orlando, FL
.
32.
Wheat
,
E.
,
Vlasea
,
M.
,
Hinebaugh
,
J.
, and
Metcalfe
,
C.
,
2018
, “
Sinter Structure Analysis of Titanium Structures Fabricated via Binder Jetting Additive Manufacturing
,”
Mater. Des.
,
156
, pp.
167
183
.
33.
Wheat
,
E.
,
Shanbhag
,
G.
, and
Vlasea
,
M.
,
2020
, “
The Master Sinter Curve and Its Application to Binder Jetting Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101002
.
34.
Parab
,
N. D.
,
Barnes
,
J. E.
,
Zhao
,
C.
,
Cunningham
,
R. W.
,
Fezzaa
,
K.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2019
, “
Real Time Observation of Binder Jetting Printing Process Using High-Speed X-Ray Imaging
,”
Sci. Rep.
,
9
(
1
), p.
2499
.
You do not currently have access to this content.