Abstract

The microstructure attributes are responsible for the deformation mechanism of material, which induces shear instability primarily in difficult-to-machine material like Ti–6Al–4V. Consequently, the dynamic cutting force yields serrations in the chip morphology. Therefore, microstructure induced shear instability has been investigated in the present work using an analytical tool to unveiled the deformation behavior in correlation with microstructural characteristics (grain sizes, phase fractions, and microhardness) and process parameters: temperature, strain, and strain rate. The combined effect of feed rate and high cutting speed was found to enhance the strain localization phenomena, which leads to a more pronounced cracking, inducing dynamic cutting force. Segmentation frequency and force-frequency correlation imply a significant transition exhibit from the static to dynamic nature of cutting force. The segmentation frequency of the equiaxed microstructure is lowest among the rest at lower cutting speed, revealing the shear instability dependency on the microstructure. The grain size effect restricts the dislocation movement at the higher cutting speed, which led to a larger strain in as-received microstructure followed by equiaxed and fully lamellar microstructure.

References

1.
Inagaki
,
I.
,
Tsutomu
,
T.
,
Yoshihisa
,
S.
, and
Nozomu
,
A.
,
2014
, “
Application and Features of Titanium for the Aerospace Industry
,”
Nippon Steel Sumitomo Met. Tech. Rep.
,
5
(
106
), pp.
22
27
.
2.
Pramanik
,
A.
,
2014
, “
Problems and Solutions in Machining of Titanium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
919
928
. 10.1007/s00170-013-5326-x
3.
Gupta
,
R. K.
,
Kumar
,
V. A.
,
Mathew
,
C.
, and
Rao
,
G.
,
2016
, “
Strain Hardening of Titanium Alloy Ti6Al4 V Sheets With Prior Heat Treatment and Cold Working
,”
Mater. Sci. Eng. A
,
662
, pp.
537
550
. 10.1016/j.msea.2016.03.094
4.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
. 10.1016/S0924-0136(96)00030-1
5.
Komanduri
,
R.
, and
Hou
,
Z.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metall. Mater. Trans. A
,
33A
, pp.
1
16
.
6.
Ma
,
W.
,
Li
,
X.
,
Dai
,
L.
, and
Ling
,
Z.
,
2012
, “
Instability Criterion of Materials in Combined Stress States and Its Application to Orthogonal Cutting Process
,”
Int. J. Plast.
,
30–31
, pp.
18
40
. 10.1016/j.ijplas.2011.09.003
7.
Lütjering
,
G.
,
1998
, “
Influence of Processing on Microstructure and Mechanical Properties of (Α+β) Titanium Alloys
,”
Mater. Sci. Eng. A
,
243
(
1–2
), pp.
32
45
. 10.1016/S0921-5093(97)00778-8
8.
Lutjering
,
G.
, and
Williams
,
J. C.
,
2007
,
Titanium
,
Springer Berlin Heidelberg
,
New York
.
9.
Leyens
,
C.
, and
Peters
,
M.
,
2003
,
Titanium and Titanium Alloys: Fundamentals and Applications
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
10.
Ye
,
G. G.
,
Jiang
,
M. Q.
,
Xue
,
S. F.
,
Ma
,
W.
, and
Dai
,
L. H.
,
2018
, “
On the Instability of Chip Flow in High-Speed Machining
,”
Mech. Mater.
,
116
, pp.
104
119
. 10.1016/j.mechmat.2017.02.006
11.
Komanduri
,
R.
,
Schroeder
,
T.
,
Hazra
,
J.
,
von Turkovich
,
B. F.
, and
Flom
,
D. G.
,
1982
, “
On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340 Steel
,”
ASME J. Manuf. Sci. Eng.
,
104
(
2
), pp.
121
131
. 10.1115/1.3185807
12.
Sutter
,
G.
,
Faure
,
L.
,
Molinari
,
A.
,
Delime
,
A.
, and
Dudzinski
,
D.
,
1997
, “
Experimental Analysis of the Cutting Process and Chip Formation at High Speed Machining
,”
J. Phys. IV JP
,
7
(
C3
), pp.
C-33
C-38
.
13.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
. 10.1016/S0749-6419(01)00003-1
14.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
15.
Burns
,
T.
, and
Davies
,
M.
,
2002
, “
On Repeated Adiabatic Shear Band Formation During High-Speed Machining1
,”
Int. J. Plast.
,
18
(
4
), pp.
487
506
. 10.1016/S0749-6419(01)00006-7
16.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
561
568
. 10.1016/j.ijmachtools.2009.02.008
17.
Sutter
,
G.
, and
List
,
G.
,
2013
, “
Very High Speed Cutting of Ti-6Al-4V Titanium Alloy—Change in Morphology and Mechanism of Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
37
43
. 10.1016/j.ijmachtools.2012.11.004
18.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti—6Al—4 V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.
19.
Sun
,
Z.
,
Shuang
,
F.
, and
Ma
,
W.
,
2018
, “
Investigations of Vibration Cutting Mechanisms of Ti6Al4 V Alloy
,”
Int. J. Mech. Sci.
,
148
, pp.
510
530
. 10.1016/j.ijmecsci.2018.09.006
20.
Sharma
,
S.
, and
Meena
,
A.
,
2020
, “
Microstructure Attributes and Tool Wear Mechanisms During High-Speed Machining of Ti-6Al-4V
,”
J. Manuf. Process.
,
50
, pp.
345
365
. 10.1016/j.jmapro.2019.12.029
21.
Rittel
,
D.
,
Zhang
,
L. H.
, and
Osovski
,
S.
,
2017
, “
The Dependence of the Taylor–Quinney Coefficient on the Dynamic Loading Mode
,”
J. Mech. Phys. Solids
,
107
, pp.
96
114
. 10.1016/j.jmps.2017.06.016
22.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principle
,
Oxford University Press
,
New York
.
23.
Jaeger
,
J.
,
1942
, “
Moving Sources of Heat and the Temperatures at Sliding Contacts
,”
J. Proc. R. Soc. New South Wales
,
76
, pp.
203
224
.
24.
Hahn
,
R.
,
1951
, “
On the Temperature Developed at the Shear Plane in the Metal Cutting Process
,”
Proceeding first US Natl. Congr. Appl. Mech.
, pp.
661
666
.
25.
Komanduri
,
R.
, and
Hou
,
Z.
,
2000
, “
Thermal Modeling of the Metal Cutting Process Part I–Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1715
1752
. 10.1016/S0020-7403(99)00070-3
26.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2003
, “
Modelling of the Cutting Temperature Distribution Under the Tool Flank Wear Effect
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
217
(
11
), pp.
1195
1208
. 10.1243/095440603771665232
27.
Li
,
K. M.
, and
Liang
,
S. Y.
,
2006
, “
Modeling of Cutting Temperature in Near Dry Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
416
424
. 10.1115/1.2162907
28.
Sun
,
J.
,
Ke
,
Q.
, and
Chen
,
W.
,
2019
, “
Material Instability Under Localized Severe Plastic Deformation During High Speed Turning of Titanium Alloy Ti-6.5AL-2Zr-1Mo-1 V
,”
J. Mater. Process. Technol.
,
264
(
37
), pp.
119
128
. 10.1016/j.jmatprotec.2018.09.002
29.
Ezugwu
,
E. O.
,
Bonney
,
J.
, and
Yamane
,
Y.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Process. Technol.
,
134
(
2
), pp.
233
253
. 10.1016/S0924-0136(02)01042-7
30.
Lindberg
,
B.
, and
Lindström
,
B.
,
1983
, “
Measurements of the Segmentation Frequency in the Chip Formation Process
,”
CIRP Ann.—Manuf. Technol.
,
32
(
1
), pp.
17
20
. 10.1016/S0007-8506(07)63353-8
31.
Kouadri
,
S.
,
Necib
,
K.
,
Atlati
,
S.
,
Haddag
,
B.
, and
Nouari
,
M.
,
2013
, “
Quantification of the Chip Segmentation in Metal Machining: Application to Machining the Aeronautical Aluminium Alloy AA2024-T351 With Cemented Carbide Tools WC-Co
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
102
113
. 10.1016/j.ijmachtools.2012.08.006
32.
Atlati
,
S.
,
Haddag
,
B.
,
Nouari
,
M.
, and
Zenasni
,
M.
,
2011
, “
Analysis of a New Segmentation Intensity Ratio SIR to Characterize the Chip Segmentation Process in Machining Ductile Metals
,”
Int. J. Mach. Tools Manuf.
,
51
(
9
), pp.
687
700
. 10.1016/j.ijmachtools.2011.05.007
33.
Jun
,
T. S.
,
Sernicola
,
G.
,
Dunne
,
F. P. E.
, and
Britton
,
T. B.
,
2016
, “
Local Deformation Mechanisms of Two-Phase Ti Alloy
,”
Mater. Sci. Eng. A
,
649
, pp.
39
47
. 10.1016/j.msea.2015.09.016
34.
Guo
,
Y. B.
,
Wen
,
Q.
, and
Woodbury
,
K. A.
,
2006
, “
Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
749
759
. 10.1115/1.2193549
35.
Luo
,
J.
,
Li
,
M.
,
Li
,
X.
, and
Shi
,
Y.
,
2010
, “
Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables
,”
Mech. Mater.
,
42
(
2
), pp.
157
165
. 10.1016/j.mechmat.2009.10.004
36.
Follansbee
,
P. S.
, and
Gray
,
G. T.
,
1989
, “
An Analysis of the Low Temperature, Low and High Strain-Rate Deformation of Ti-6Al-4V
,”
Metall. Trans. A
,
20
(
5
), pp.
863
874
. 10.1007/BF02651653
37.
Yameogo
,
D.
,
Haddag
,
B.
,
Makich
,
H.
, and
Nouari
,
M.
,
2019
, “
A Physical Behavior Model Including Dynamic Recrystallization and Damage Mechanisms for Cutting Process Simulation of the Titanium Alloy Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
333
347
. 10.1007/s00170-018-2663-9
38.
Liu
,
R.
,
2014
,
A Unified Constitutive Material Model with Application to Machining, Ph.D. Thesis, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
.
39.
Astakhov
,
V. P.
,
2006
,
Tribology of Metal Cutting
,
Elsevier Ltd, Kidlington
,
Oxford
.
40.
Afonja
,
A. A.
,
1982
, “
Grain Size Dependence of the Strain Rate Sensitivity and Activation Energy of High Temperature Deformation of a Microduplex Stainless Steel
,”
Mater. Sci. Eng.
,
54
(
2
), pp.
257
263
. 10.1016/0025-5416(82)90120-3
41.
Mandal
,
S.
,
Bhaduri
,
A. K.
, and
Sarma
,
V. S.
,
2012
, “
Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
43
(
6
), pp.
2056
2068
. 10.1007/s11661-011-1012-5
42.
Ye
,
G. G.
,
Xue
,
S. F.
,
Ma
,
W.
, and
Dai
,
L. H.
,
2017
, “
Onset and Evolution of Discontinuously Segmented Chip Flow in Ultra-High-Speed Cutting Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
1161
1174
.
You do not currently have access to this content.