Abstract

Face gear sets, comprising a face gear and a cylindrical pinion, are used in the crossed axes transmission with the advantages of easy assembly and a large gear ratio. Based on the geometry of a pinion tooth flank, the tooth surface of the face gear is derived and manufactured by gear hobbing or shaping processes. However, the hobbing and shaping processes to make a face gear require special machine attachments to achieve the spatial relationship between the gear cutter and the workpiece of the face gear. These special machine attachments are not always available in a typical gear-machining factory, so this study develops a manufacturing process that uses a standard spiral bevel gear generator and standard face-milling cutting tools to produce a face gear. The productivity and the gear quality of a face gear that is made using the proposed cutting method are similar to that for a spiral bevel gear that is produced by indexed duplex cutting. The machine settings for the spiral bevel gear generator are derived using the tooth surface of a face gear, which is conjugated to the tooth surface of specific pinion. This study uses a duplex face-milling method with multiple auxiliary flank modification motions to minimize the flank normal deviation between the conjugate and the generated face gear. A numerical example and a cutting experiment are performed to verify the feasibility of the proposed methodology.

References

1.
Saari
,
O. E.
,
1957
, “
Skew Axis Gearing
,” United States Patent Office, Patent No. 2,954,704.
2.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Wang
,
J.-C.
,
Bossler
,
R. B.
, and
Chen
,
Y.-J. D.
,
1992
, “
Design and Geometry of Face-Gear Drives
,”
ASME J. Mech. Des.
,
114
(
12
), pp.
642
647
.
3.
Litvin
,
F. L.
,
Wang
,
J.-C.
,
Bossler
,
R. B.
,
Chen
,
Y.-J. D.
,
Heath
,
G.
, and
Lewicki
,
D. G.
,
1994
, “
Application of Face-Gear Drives in Helicopter Transmissions
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
672
676
.
4.
Litvin
,
F. L.
,
Egelja
,
A.
, and
Seol
,
I.
,
2000
, “
Hybrid Gear Drive
,” United States Patent Office, Patent No. 6,128,969.
5.
Litvin
,
F. L.
,
Argentieri
,
G.
,
De Donno
,
M.
, and
Hawkins
,
M.
,
2000
, “
Computerized Design, Generation and Simulation of Meshing and Contact of Face Worm-Gear Drives
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
3
), pp.
785
801
.
6.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Howkins
,
M.
,
2001
, “
Design, Generation and TCA of New Type of Asymmetric Face-Gear Drive With Modified Geometry
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
43–44
), pp.
5837
5865
.
7.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Zanzi
,
C.
, and
Pontiggia
,
M.
,
2002
, “
Design, Generation, and Stress Analysis of Two Versions of Geometry of Face-Gear Drives
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1179
1211
.
8.
Zhang
,
Y.
, and
Wu
,
Z.
,
1997
, “
Offset Face Gear Drives: Tooth Geometry and Contact Analysis
,”
ASME J. Mech. Des.
,
119
(
3
), pp.
114
119
.
9.
Abadjiev
,
V.
,
2001
, “
On the Helical Tooth Flank Synthesis of Skew-Axes Gear Pairs
,”
Mech. Mach. Theory
,
36
(
10
), pp.
1135
1146
.
10.
Stadtfeld
,
H. J.
,
2010
, “
CONIFACE Face Gear Cutting and Grinding
,”
Gear Solutions
, September, pp.
38
47
, https://gearsolutions.com/features/coniface-face-gear-cutting-and-grinding/
11.
Peng
,
X.-I.
,
Niu
,
Q.-Y.
,
Guo
,
W.
, and
Fang
,
Z.-D.
,
2018
, “
A New Method of Motion Rule Synthesis for Face Gear Manufacturing by Plane-Cutter
,”
ASME J. Mech. Des.
,
140
(
2
), p.
023302
.
12.
Peng
,
X.-I.
,
Zhang
,
L.
, and
Fang
,
Z.-D.
,
2016
, “
Manufacturing Process for a Face Gear Drive With Local Bearing Contact and Controllable Unloaded Meshing Performance Based on Ease-Off Surface Modification
,”
ASME J. Mech. Des.
,
138
(
4
), p.
043302
.
13.
Shen
,
Y.
,
Liu
,
X.
,
Li
,
Z. P.
, and
Li
,
D. Y.
,
2017
, “
Research on Shaving Processing of Spiroid Face Gear
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
605
613
.
14.
Shen
,
Y.
, and
Liu
,
X.
,
2018
, “
Computer-Integrated Shaving Processing for Spiroid Face Gear on a Five-Axis CNC Machine
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
1061
1070
.
15.
Shen
,
Y.
,
Liu
,
X.
,
Li
,
D.
, and
Li
,
Z.
,
2018
, “
A Method for Grinding Face Gear of Double Crowned Tooth Geometry on a Multi-axis CNC Machine
,”
Mech. Mach. Theory
,
121
, pp.
460
474
.
16.
Evertz
,
F.
,
Gangireddy
,
M.
,
Mork
,
B.
,
Porter
,
T.
, and
Quist
,
A.
,
2020
, “
2020 High Torque Skew Axis Gearing
,” A Technical Primer, Spiroid Gearing, A division of Illinois Tool Works Inc., https://www.spiroidgearing.com/
17.
Wang
,
Y.
,
Hou
,
L.
,
Lan
,
Z.
, and
Zhu
,
C.
,
2017
, “
Precision Milling Method for Face-Gear by Disk Cutter
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1545
1558
.
18.
Zhou
,
Y.
,
Wang
,
S.
,
Wang
,
L.
,
Tang
,
J.
, and
Chen
,
Z. C.
,
2019
, “
CNC Milling of Face Gears With a Novel Geometric Analysis
,”
Mech. Mach. Theory
,
139
, pp.
46
65
.
19.
Guo
,
H.
,
Gonzalez-Perez
,
I.
, and
Fuentes-Aznar
,
A.
,
2019
, “
Computerized Generation and Meshing Simulation of Face Gear Drives Manufactured by Circular Cutters
,”
Mech. Mach. Theory
,
133
, pp.
44
63
.
20.
Guo
,
H.
,
Zhang
,
S.
,
Wu
,
T.
, and
Zhao
,
N.
,
2021
, “
An Approximate Design Method of Grinding Worm With Variable Meshing Angle and Grinding Experiments of Face Gear
,”
Mech. Mach. Theory
,
166
, p.
104461
.
21.
Wang
,
Y.
,
Su
,
G.
,
Chu
,
X.
,
Hung
,
Y.
,
Shiyuan
,
E.
, and
Zhang
,
W.
,
2021
, “
A Finishing Method for the Continuous Generation of Spur Face Gears With Shaving Cutters
,”
Int. J. Mech. Sci.
,
190
(
3
), p.
106020
.
22.
Wang
,
Y.
,
Su
,
G.
,
Liu
,
D.
,
Huang
,
Y.
,
Xie
,
M.
, and
Zhang
,
W.
,
2022
, “
A Hobbing Method for Spur Face Gears With Bidirectional Modification
,”
Int. J. Adv. Manuf. Technol.
,
119
(
4
), pp.
275
286
.
23.
Batsch
,
M.
,
2020
, “
A Novel Method of Obtaining Honing Tool Profile for Machining Gears With Profile Modifications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091004
.
24.
Marinakis
,
A.
,
Dandouti
,
E.
, and
Antoniadis
,
A.
,
2022
, “
CAD-Based Simulation Model for the Calculation of Chip Geometry and Cutting Force Components in Gear Shaping
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081011
.
25.
Litvin
,
F. L.
,
Nava
,
A.
,
Fan
,
Q.
, and
Fuentes
,
A.
,
2002
, “
New Geometry of Face Gear Drives With Conical and Cylindrical Pinions: Generation, Simulation of Meshing, and Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
27–28
), pp.
3035
3054
.
26.
Zheng
,
F.
,
Xinghui
,
H.
,
Hua
,
L.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2018
, “
Design and Manufacture of New Type of Non-circular Cylindrical Gear Generated by Face-Milling Method
,”
Mech. Mach. Theory
,
122
, pp.
326
346
.
27.
Lee
,
Y. H.
, and
Fong
,
Z. H.
,
2020
, “
Study on Building Digital-Twin of Face-Milled Hypoid Gear From Measured Tooth Surface Topographical Data
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113401
.
28.
Hsu
,
R.-H.
,
Shih
,
Y.-P.
,
Fong
,
Z.-H.
,
Huang
,
C.-L.
,
Chen
,
S.-H.
,
Chen
,
S.-S.
,
Lee
,
Y.-H.
,
Chen
,
K.-H.
,
Hsu
,
T.-P.
, and
Chen
,
W.-J.
,
2020
, “
Mathematica Model of a Vertical Six-Axis Cartesian Computer Numerical Control Machine for Producing Face-Milled and Face-Hobbed Bevel Gears
,”
ASME J. Mech. Des.
,
142
(
4
), p.
043301
.
29.
Fan
,
Q.
,
DaFoe
,
R. S.
, and
Swanger
,
J. W.
,
2008
, “
Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072601
.
30.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
31.
Fong
,
Z. H.
,
2000
, “
Mathematical Model of Universal Hypoid Generator With Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
136
142
.
32.
Thomas
,
J.
, and
Vogel
,
O.
,
2005
, “
6M Machine Kinematics for Bevel and Hypoid Gears
,”
Proceedings of the International Conference on Gears
,
Munich
, VDI Report No. 1904, pp.
435
451
.
You do not currently have access to this content.