Abstract

Magnetorheological elastomer (MRE) has great application prospects in the fields of shock absorption, isolation, sensing, and soft robots. However, the MRE precursor mixture cannot be printed directly due to its low viscosity and long curing time, which makes it difficult to manufacture MRE with complex structure, or multifunctional composite. Aiming at the MRE 3D printing dilemmas of material and process issues, a rheology modifier ink preparation method of MRE precursor mixture and a MRE 3D printing process that use MRE precursor mixtures to print directly with direct ink writing (DIW) are proposed. To obtain high-precision manufacturing process, the influence of process parameters such as nozzle diameter, extrusion pressure, feed speed, and nozzle height on the ink filaments is analyzed on the basis of theoretical models and experiments. The experiment results show that MREs with different characteristics and complex structures can be printed with high precision(≤0.2 mm), and the proposed MRE ink and 3D printing process are valid. To further verify the feasibility of 3D printing MRE, the magnetorheological effects of 3D-printed MRE samples are tested, and their stiffness can be improved under magnetic field conditions.

References

1.
Ubaidillah
,
Sutrisno
,
J.
,
Purwanto
,
A.
, and
Mazlan
,
S. A.
,
2015
, “
Recent Progress on Magnetorheological Solids: Materials, Fabrication, Testing, and Applications
,”
Adv. Eng. Mater.
,
17
(
5
), pp.
563
597
.
2.
Li
,
W.
,
Zhang
,
X.
, and
Du
,
H.
,
2012
, “
Development and Simulation Evaluation of a Magnetorheological Elastomer Isolator for Seat Vibration Control
,”
J. Intell. Mater. Syst. Struct.
,
23
(
9
), pp.
1041
1048
.
3.
Eem
,
S.-H.
,
Jung
,
H.-J.
, and
Koo
,
J.-H.
,
2012
, “
Modeling of Magneto-Rheological Elastomers for Harmonic Shear Deformation
,”
IEEE Trans. Magn.
,
48
(
11
), pp.
3080
3083
.
4.
Fu
,
J.
,
Li
,
P.
,
Wang
,
Y.
,
Liao
,
G.
, and
Yu
,
M.
,
2016
, “
Model-free Fuzzy Control of a Magnetorheological Elastomer Vibration Isolation System: Analysis and Experimental Evaluation
,”
Smart Mater. Struct.
,
25
(
3
), p.
035030
.
5.
Liu
,
T.-Y.
,
Hu
,
S.-H.
,
Liu
,
K.-H.
,
Liu
,
D.-M.
, and
Chen
,
S.-Y.
,
2006
, “
Preparation and Characterization of Smart Magnetic Hydrogels and Its Use for Drug Release
,”
J. Magn. Magn. Mater.
,
304
(
1
), pp.
e397
e399
.
6.
Liu
,
T. Y.
,
Hu
,
S. H.
,
Liu
,
T. Y.
,
Liu
,
D. M.
, and
Chen
,
S. Y. J. L.
,
2006
, “
Magnetic-Sensitive Behavior of Intelligent Ferrogels for Controlled Release of Drug
,”
Langmuir
,
22
(
14
), pp.
5974
5978
.
7.
Carlson
,
J. D.
, and
Jolly
,
M. R.
,
2000
, “
MR Fluid, Foam and Elastomer Devices
,”
Mechatronics
,
10
(
4–5
), pp.
555
569
.
8.
Bica
,
I.
,
2009
, “
Influence of the Transverse Magnetic Field Intensity Upon the Electric Resistance of the Magnetorheological Elastomer Containing Graphite Microparticles
,”
Mater. Lett.
,
63
(
26
), pp.
2230
2232
.
9.
Ausanio
,
G.
,
Iannotti
,
V.
,
Ricciardi
,
E.
,
Lanotte
,
L.
, and
Lanotte
,
L.
,
2014
, “
Magneto-Piezoresistance in Magnetorheological Elastomers for Magnetic Induction Gradient or Position Sensors
,”
Sens. Actuators A
,
205
, pp.
235
239
.
10.
Abramchuk
,
S.
,
Kramarenko
,
E.
,
Grishin
,
D.
,
Stepanov
,
G.
,
Nikitin
,
L. V.
,
Filipcsei
,
G.
,
Khokhlov
,
A. R.
, and
Zrínyi
,
M.
,
2007
, “
Novel Highly Elastic Magnetic Materials for Dampers and Seals: Part II. Material Behavior in a Magnetic Field
,”
Polym. Adv. Technol.
,
18
(
7
), pp.
513
518
.
11.
Metsch
,
P.
,
Kalina
,
K. A.
,
Spieler
,
C.
, and
Kästner
,
M.
,
2016
, “
A Numerical Study on Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Comput. Mater. Sci.
,
124
, pp.
364
374
.
12.
Stolbov
,
O. V.
,
Raikher
,
Y. L.
, and
Balasoiu
,
M.
,
2011
, “
Modelling of Magnetodipolar Striction in Soft Magnetic Elastomers
,”
Soft Matter
,
7
(
18
), p.
8484
.
13.
Hu
,
Y.
,
Wang
,
Y. L.
,
Gong
,
X. L.
,
Gong
,
X. Q.
,
Zhang
,
X. Z.
,
Jiang
,
W. Q.
,
Zhang
,
P. Q.
, and
Chen
,
Z. Y. J. P. T.
,
2005
, “
Magnetorheological Elastomers Based on Polyurethane/si-Rubber Hybrid
,”
Polym. Test.
,
24
(
3
), pp.
324
329
.
14.
Wang
,
Y.
,
Hu
,
Y.
,
Gong
,
X.
,
Jiang
,
W.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2007
, “
Preparation and Properties of Magnetorheological Elastomers Based on Silicon Rubber/Polystyrene Blend Matrix
,”
J. Appl. Polym. Sci.
,
103
(
5
), pp.
3143
3149
.
15.
Kramarenko
,
E. Y.
,
Chertovich
,
A. V.
,
Stepanov
,
G. V.
,
Semisalova
,
A. S.
,
Makarova
,
L. A.
,
Perov
,
N. S.
, and
Khokhlov
,
A. R.
,
2015
, “
Magnetic and Viscoelastic Response of Elastomers With Hard Magnetic Filler
,”
Smart Mater. Struct.
,
24
(
3
), p.
035002
.
16.
Krueger
,
H.
,
Vaezi
,
M.
, and
Yang
,
S.
,
2014
, “
3D Printing of Magnetorheological Elastomers (MREs) Smart Materials
,”
International Conference on Progress in Additive Manufacturing
,
Singapore
.
17.
Bastola
,
A. K.
,
Hoang
,
V. T.
, and
Li
,
L.
,
2017
, “
A Novel Hybrid Magnetorheological Elastomer Developed by 3D Printing
,”
Mater. Des.
,
114
, pp.
391
397
.
18.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), pp.
1
15
.
19.
Roh
,
S.
,
Okello
,
L. B.
,
Golbasi
,
N.
,
Hankwitz
,
J. P.
,
Liu
,
J. A. C.
,
Tracy
,
J. B.
, and
Velev
,
O. D.
,
2019
, “
3D-Printed Silicone Soft Architectures With Programmed Magneto-Capillary Reconfiguration
,”
Adv. Mater. Technol.
,
4
(
4
), p.
1800528
.
20.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
.
21.
Highley
,
C. B.
,
Rodell
,
C. B.
, and
Burdick
,
J. A.
,
2015
, “
Direct 3D Printing of Shear-Thinning Hydrogels Into Self-Healing Hydrogels
,”
Adv. Mater.
,
27
(
34
), pp.
5075
5079
.
22.
Guo
,
Z.
,
Yang
,
R.
,
Wang
,
T.
,
An
,
L.
,
Ren
,
S.
, and
Zhou
,
C.
,
2020
, “
Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel
,”
ASME. J. Manuf. Sci. Eng.
,
143
(
1
), p.
011011
.
23.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
24.
Lv
,
J.
,
Gong
,
Z.
,
He
,
Z.
,
Yang
,
J.
,
Chen
,
Y.
,
Tang
,
C.
,
Liu
,
Y.
,
Fan
,
M.
, and
Lau
,
W.-M.
,
2017
, “
3D Printing of a Mechanically Durable Superhydrophobic Porous Membrane for Oil–Water Separation
,”
J. Mater. Chem. A
,
5
(
24
), pp.
12435
12444
.
25.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
26.
Schaffner
,
M.
,
Faber
,
J. A.
,
Pianegonda
,
L.
,
Rühs
,
P. A.
,
Coulter
,
F.
, and
Studart
,
A. R.
,
2018
, “
3D Printing of Robotic Soft Actuators With Programmable Bioinspired Architectures
,”
Nat. Commun.
,
9
(
1
), p.
878
.
27.
Yuk
,
H.
, and
Zhao
,
X.
,
2018
, “
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks
,”
Adv. Mater.
,
30
(
6
), p.
1704028
.
28.
Liang
,
J. Z.
,
2010
, “
Effects of Diatomite on Extrudate Swell Behavior of Polypropylene Composite Melts
,”
J. Appl. Polym. Sci.
,
118
(
1
), pp.
385
389
.
29.
Liang
,
J.-Z.
,
2008
, “
Effects of Extrusion Conditions on Die-Swell Behavior of Polypropylene/Diatomite Composite Melts
,”
J. Mater. Process. Technol.
,
27
(
8
), pp.
936
940
.
30.
Wang
,
K.
,
2012
, “
Die Swell of Complex Polymeric Systems
,”
Viscoelasticity.
You do not currently have access to this content.