Abstract

This paper presents an experimental and numerical study on the mechanical quasi-static behavior of self-piercing rivet (SPR) connections with three stacked sheets made from an AA6016-T4 aluminum alloy. The goal was to study the effects of sheet thickness and stack up of the SPR connection under large deformation and failure. Several different types of tests were performed to investigate the initial load-bearing capacity as well as the remaining capacity after partial joint failure. Additionally, the performance of state-of-the-art constraint modeling techniques was evaluated. The parameters for large-scale connector models were found through inverse modeling of the experiments. The models were validated against an additional test configuration where the middle sheet was load-free.

References

1.
Hirsch
,
J.
,
2011
, “
Aluminium in Innovative Light-Weight Car Design
,”
Mater. Trans.
,
52
(
5
), pp.
818
824
.
2.
Meschut
,
G.
,
Janzen
,
V.
, and
Olfermann
,
T.
,
2014
, “
Innovative and Highly Productive Joining Technologies for Multimaterial Lightweight Car Body Structures
,”
J. Mater. Eng. Perform.
,
23
(
5
), pp.
1515
1523
.
3.
Mori
,
K.
,
Abe
,
Y.
, and
Kato
,
T.
,
2014
, “
Self-Pierce Riveting of Multiple Steel and Aluminium Alloy Sheets
,”
J. Mater. Process. Technol.
,
214
(
10
), pp.
2002
2008
.
4.
Heidrich
,
D.
,
Zhang
,
F.
, and
Fang
,
X.
,
2021
, “
Fatigue Strength of Rivet Resistance Spot Welding Technique in Comparison With Self-Piercing Riveting for Multi-material Body-in-White Structure
,”
J. Mater. Eng. Perform.
,
30
(
5
), pp.
3806
3821
.
5.
Chrysanthou, A., and Sun
,
X.
,
2014
, “
Dynamic Strength Evaluation/Crashworthiness of Self-Piercing Riveted Joints
,” Self-Piercing Riveting: Properties, Processes and Applications, Woodhead Publishing, Philadelphia, PA, pp.
56
78
.
6.
Porcaro
,
R.
,
Langseth
,
M.
,
Hanssen
,
A. G.
,
Zhao
,
H.
,
Weyer
,
S.
, and
Hooputra
,
H.
,
2008
, “
Crashworthiness of Selfpiercing Riveted Connections
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1251
1266
.
7.
Yang
,
B.
,
Shan
,
H.
,
Liang
,
Y.
,
Ma
,
Y.
,
Niu
,
S.
,
Zhu
,
X.
, and
Li
,
Y.
,
2022
, “
Effect of Adhesive Application on Friction Self-Piercing Riveting (F-SPR) Process of AA7075-T6 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
299
(
1
), p.
117336
.
9.
Xu
,
Y.
,
2006
, “
Effects of Factors on Physical Attributes of Self-Piercing Riveted Joints
,”
Sci. Technol. Weld. Join.
,
11
(
6
), pp.
666
671
.
10.
Pouranvari
,
M.
, and
Marashi
,
P.
,
2012
, “
Failure Behavior of Three-Steel Sheets Resistance Spot Welds: Effect of Joint Design
,”
J. Mater. Eng. Perform.
,
21
(
1
), pp.
1669
1675
.
11.
Tavasolizadeh
,
A.
,
Marashi
,
S. P.
, and
Pouranvari
,
M.
,
2011
, “
Mechanical Performance of Three Thickness Resistance Spot Welded Low Carbon Steel
,”
Mater. Sci. Technol.
,
27
(
1
), pp.
219
224
.
12.
Tounsi
,
R.
,
Haugou
,
G.
,
Chaari
,
F.
,
Leconte
,
N.
, and
Markiewicz
,
E.
,
2019
, “
Experimental Characterization of the Mechanical Behaviour and the Failure of Multi-Sheet and Multi-Material Spot Welded Assembly
,”
Int. J. Impact Eng.
,
130
(Special issue on ICILSM2018), pp.
226
238
.
13.
Chtourou
,
R.
,
Haugou
,
G.
,
Leconte
,
N.
,
Zouari
,
B.
,
Chaari
,
F.
, and
Markiewicz
,
E.
,
2015
, “
Experimental Characterization and Macro-Modeling of Mechanical Strength of Multi-Sheets and Multi-Materials Spot Welds Under Pure and Mixed Modes I and II
,”
DYMAT 2015 – 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
,
Lugano, Switzerland
,
Sept. 7-11
.
14.
Chtourou
,
R.
,
Leconte
,
N.
,
Chaari
,
F.
,
Haugou
,
G.
,
Markiewicz
,
E.
, and
Zouari
,
B.
,
2017
, “
Macro-Modeling of the Strength and Failure of Multi-Layer Multi-steel Grade Spot Welds: Connector Formulation, Assembly Model and Identification Procedure
,”
Thin-Walled Struct.
,
113
(
1
), pp.
228
239
.
15.
Li
,
D.
,
Chrysanthou
,
A.
,
Patel
,
I.
, and
Williams
,
G.
,
2017
, “
Self-Piercing Riveting-A Review
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1
), pp.
1777
1824
.
16.
Hanssen
,
A. G.
,
Olovsson
,
L.
,
Porcaro
,
R.
, and
Langseth
,
M.
,
2010
, “
A Large-Scale Finite Element Point-Connector Model for Self-Piercing Rivet Connections
,”
Eur. J. Mech., A/Solids
,
29
(
4
), pp.
484
495
.
17.
User Manual - eCorr - Digital Image Correlation Tool
,
2017
, https://folk.ntnu.no/egilf/ecorr/doc/, NTNU, Trondheim, Norway.
18.
Fagerholt
,
E.
,
Borvik
,
T.
, and
Hopperstad
,
O. S.
,
2013
, “
Measuring Discontinuous Displacement Fields in Cracked Specimens Using Digital Image Correlation With Mesh Adaptation and Crack-Path Optimization
,”
Opt. Lasers Eng.
,
51
(
3
), pp.
299
310
.
19.
Sønstabø
,
J. K.
,
Morin
,
D.
, and
Langseth
,
M.
,
2016
, “
Macroscopic Modelling of Flow-Drill Screw Connections in Thinwalled Aluminium Structures
,”
Thin-Walled Struct.
,
105
(
1
), pp.
185
206
.
20.
LS-DYNA Keyword User’s Manual Volume I Version 11
,
2019
. https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manuals. Livermore, California.
21.
Costas
,
M.
,
Morin
,
D.
,
Hopperstad
,
O. S.
,
Børvik
,
T.
, and
Langseth
,
M.
,
2019
, “
A Through-Thickness Damage Regularisation Scheme for Shell Elements Subjected to Severe Bending and Membrane Deformations
,”
J. Mech. Phys. Solids.
,
123
(
1
), pp.
190
206
.
22.
Hershey
,
A.
,
1954
, “
The Plasticity of an Isotropic Aggregate of Anisotropic Face-Centered Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(
3
), pp.
241
249
.
23.
Morin
,
D.
,
Kaarstad
,
B. L.
,
Skajaa
,
B.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2017
, “
Testing and Modelling of Stiffened Aluminium Panels Subjected to Quasi-Static and Low-Velocity Impact Loading
,”
Int. J. Impact Eng.
,
110
(
1
), pp.
97
111
.
24.
LS-OPT User’s Manual Version 6.0, A Design Optimization and Probabilistic Analysis Tool For The Engineering Analysist
,
2019
, https://www.lsoptsupport.com/documents/manuals/ls-opt/lsopt˙60˙manual.pdf, Livermore, CA.
You do not currently have access to this content.