Abstract

Ni- and Co-based M–Cr–Al–Y (M = Ni and/or Co), dual phase β and γ/γ′, β—Ni–Al, γ—Ni(Co, Cr), and γ′—Ni3–Al superalloys exhibit several beneficial high-temperature (>1000 °C) (2012 °F) strength and corrosion resistance properties. Our study investigates the feasibility of fabricating a commercially available Ni–Co–Cr–AlY alloy (tradename “Amdry 386”) using laser directed energy deposition (laser-DED). A significant challenge for laser fabrication of bulk Amdry 386 (A386) structures stems from the presence of relatively higher amounts of the β phase than γ/γ′ phases. While prior studies report laser fabrication of these materials in coating and cladding configurations, bulk structures have not been realized. To investigate these challenges, this study was developed to systematically evaluate the effects of modifying the A386 alloy by adding 10, 20, and 30% by weight of a Ni–20%Cr (Ni–Cr) alloy (mainly γ/γ′). Laser-DED-fabricated A386 coupons exhibited a metastable, rapidly solidified β-rich microstructure typical to laser processes. The A386 + Ni–Cr mixtures were processed using laser-DED, and small coupons from each composition were evaluated using SEM, XRD, and microhardness to characterize the as-processed microstructure. Thermodynamic modeling was performed to determine the phase evolution as a function of the alloy composition. The dominating phase switches from β to γ/γ’ between the A386 and A386 + 10% Ni–Cr mixtures, but the increase in structural integrity is not observed until the Ni–Cr additions reach a minimum of 20%. Our results show that the alloy chemistry can be successfully modified to improve the structural integrity of laser-processed structures.

References

1.
Carter
,
T. J.
,
2005
, “
Common Failures in Gas Turbine Blades
,”
Eng. Failure Anal.
,
12
(
2
), pp.
237
247
.
2.
Sato
,
A.
,
Chiu
,
Y. L.
, and
Reed
,
R. C.
,
2011
, “
Oxidation of Nickel-Based Single-Crystal Superalloys for Industrial Gas Turbine Applications
,”
Acta Mater.
,
59
(
1
), pp.
225
240
.
3.
Eliaz
,
N.
,
Shemesh
,
G.
, and
Latanision
,
R. M.
,
2002
, “
Hot Corrosion in Gas Turbine Components
,”
Eng. Failure Anal.
,
9
(
1
), pp.
31
43
.
4.
Konter
,
M.
, and
Thumann
,
M.
,
2001
, “
Materials and Manufacturing of Advanced Industrial Gas Turbine Components
,”
J. Mater. Process. Technol.
,
117
(
3
), pp.
386
390
.
5.
Mazur
,
Z.
,
Luna-Ramirez
,
A.
,
Juárez-Islas
,
J. A.
, and
Campos-Amezcua
,
A.
,
2005
, “
Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy
,”
Eng. Failure Anal.
,
12
(
3
), pp.
474
486
.
6.
Terberger
,
P. J.
,
Sebold
,
D.
,
Webler
,
R.
,
Ziener
,
M.
,
Neumeier
,
S.
,
Klein
,
L.
,
Virtanen
,
S.
,
Göken
,
M.
, and
Vassen
,
R.
,
2015
, “
Isothermal Aging of a γ′-Strengthened Co–Al–W Alloy Coated With Vacuum Plasma-Sprayed MCrAlY Bond Coats
,”
Surf. Coat. Technol.
,
276
, pp.
360
367
.
7.
Bahamirian
,
M.
,
Hadavi
,
S. M. M.
,
Farvizi
,
M.
,
Rahimipour
,
M. R.
, and
Keyvani
,
A.
,
2019
, “
Phase Stability of ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3 Compound at 1100 °C and 1300 °C for Advanced TBC Applications
,”
Ceram. Int.
,
45
(
6
), pp.
7344
7350
.
8.
Hrutkay
,
K.
, and
Kaoumi
,
D.
,
2014
, “
Tensile Deformation Behavior of a Nickel Based Superalloy at Different Temperatures
,”
Mater. Sci. Eng.: A
,
599
, pp.
196
203
.
9.
Vermaak
,
N.
,
Mottura
,
A.
, and
Pollock
,
T. M.
,
2013
, “
Cyclic Oxidation of High Temperature Coatings on New γ′-Strengthened Cobalt-Based Alloys
,”
Corros. Sci.
,
75
, pp.
300
308
.
10.
Chen
,
M.
,
Feng
,
K.
,
Li
,
M.
, and
Zhou
,
C.
,
2020
, “
Hot Corrosion Behaviour of Al-Si-Dy Coating on New γ′-Strengthened Cobalt-Based Alloy
,”
Corros. Sci.
,
166
, p.
108431
.
11.
Schafrik
,
R.
, and
Sprague
,
R.
,
2004
, “
Gas Turbine Materials
,”
Adv. Mater. Process.
,
5
, pp.
29
34
.
12.
Herzog
,
R.
,
Warnken
,
N.
,
Steinbach
,
I.
,
Hallstedt
,
B.
,
Walter
,
C.
,
Muller
,
J.
,
Hajas
,
D.
, et al
,
2007
,
Integral Materials Modeling: Towards Physics-Based Through-Process Models.
,
Wiley Publishing
,
Hoboken, NJ
.
13.
Oerlikon Metco
,
2020
,
Material Product Data Sheet Nickel [Cobalt] Chromium Aluminum Yttrium (Ni[Co]CrAl[Ta, HfSi]Y) Powders [Product Data Sheet—DSM-0248.2-NiCrAlY and NiCoCrAlY Powders]
,
Oerlikon Metco
,
Troy, MI
.
14.
Liu
,
Q.
,
Huang
,
S.
, and
He
,
A.
,
2019
, “
Composite Ceramics Thermal Barrier Coatings of Yttria Stabilized Zirconia for Aero-Engines
,”
J. Mater. Sci. Technol.
,
35
(
12
), pp.
2814
2823
.
15.
Mercier
,
S.
,
Giovannetti
,
I.
,
Josso
,
P.
, and
Bacos
,
M. P.
,
2006
, “
Analysis of the Co-Deposition of CrAlYTa Particles With Nickel by an Electrolytic–Electroless Route: The Influence of Solution and Hydrodynamic Parameters
,”
Surf. Coat. Technol.
,
201
(
1–2
), pp.
120
128
.
16.
Chattopadhyay
,
R.
,
2004
, “
Electron Beam Processes
,”
Adv. Therm. Assist. Sur. Eng. Process.
, pp.
135
147
. .
17.
Hoffelner
,
W.
,
2013
, “Components and Its Production,”
Materials for Nuclear Plants
,
Springer
,
London
, pp.
135
195
.
18.
Tong
,
C.
,
2019
, “Advanced Materials Enable Energy Production From Fossil Fuels,”
Introduction to Materials for Advanced Energy Systems
,
Springer
,
Cham
, pp.
171
230
.
19.
Cinca
,
N.
,
Lima
,
C. R. C.
, and
Guilemany
,
J. M.
,
2013
, “
An Overview of Intermetallics Research and Application: Status of Thermal Spray Coatings
,”
J. Mater. Res. Technol.
,
2
(
1
), pp.
75
86
.
20.
Vardelle
,
A.
,
Moreau
,
C.
,
Akedo
,
J.
,
Ashrafizadeh
,
H.
,
Berndt
,
C. C.
,
Berghaus
,
J. O.
, and
Vuoristo
,
P.
,
2016
, “
The 2016 Thermal Spray Roadmap
,”
J. Therm. Spray Technol.
,
25
(
8
), pp.
1376
1440
.
21.
Ang
,
A. S. M.
, and
Berndt
,
C. C.
,
2014
, “
A Review of Testing Methods for Thermal Spray Coatings
,”
Int. Mater. Rev.
,
59
(
4
), pp.
179
223
.
22.
Kumar
,
S.
,
Selvarajan
,
V.
,
Padmanabhan
,
P. V. A.
, and
Sreekumar
,
K. P.
,
2006
, “
Characterization and Comparison Between Ball Milled and Plasma Processed Iron-Aluminium Thermal Spray Coatings
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1267
1275
.
23.
Higuera
,
V.
,
Belzunce
,
F. J.
, and
Riba
,
J.
,
2006
, “
Influence of the Thermal-Spray Procedure on the Properties of a CoNiCrAlY Coating
,”
Surf. Coat. Technol.
,
200
(
18–19
), pp.
5550
5556
.
24.
Gibson
,
J. S. L.
,
Schröders
,
S.
,
Zehnder
,
C.
, and
Korte-Kerzel
,
S.
,
2017
, “
On Extracting Mechanical Properties From Nanoindentation at Temperatures up to 1000 C
,”
Extreme Mech. Lett.
,
17
, pp.
43
49
.
25.
Gurrappa
,
I.
,
2003
, “
Influence of Alloying Elements on Hot Corrosion of Superalloys and Coatings: Necessity of Smart Coatings for Gas Turbine Engines
,”
Mater. Sci. Technol.
,
19
(
2
), pp.
178
183
.
26.
Quan
,
Z.
,
Wu
,
A.
,
Keefe
,
M.
,
Qin
,
X.
,
Yu
,
J.
,
Suhr
,
J.
,
Byun
,
J. H.
,
Kim
,
B. S.
, and
Chou
,
T. W.
,
2015
, “
Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges
,”
Mater. Today
,
18
(
9
), pp.
503
512
.
27.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Cleaner Prod.
,
137
, pp.
1573
1587
.
28.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
, 3rd ed.,
Springer Publishing
,
Gateway East, Singapore
.
29.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
30.
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
, pp.
43
56
.
31.
AlMangour
,
B.
,
2019
,
Additive Manufacturing of Emerging Materials
,
Springer Publishing
,
Cham, Switzerland
.
32.
Emmelmann
,
C.
,
Scheinemann
,
P.
,
Munsch
,
M.
, and
Seyda
,
V.
,
2011
, “
Laser Additive Manufacturing of Modified Implant Surfaces With Osseointegrative Characteristics
,”
Phys. Procedia
,
12
, pp.
375
384
.
33.
Wang
,
X.
,
Xu
,
S.
,
Zhou
,
S.
,
Xu
,
W.
,
Leary
,
M.
,
Choong
,
P.
,
Qian
,
M.
,
Brandt
,
M.
, and
Xie
,
Y. M.
,
2016
, “
Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review
,”
Biomaterials
,
83
(
2016
), pp.
127
141
.
34.
Li
,
C.
,
Pisignano
,
D.
,
Zhao
,
Y.
, and
Xue
,
J.
,
2020
, “
Advances in Medical Applications of Additive Manufacturing
,”
Engineering
,
6
(
11
), pp.
1222
1231
.
35.
Liu
,
R.
,
Wang
,
Z.
,
Sparks
,
T.
,
Liou
,
F.
, and
Newkirk
,
J.
,
2017
, “
Aerospace Applications of Laser Additive Manufacturing
,”
Laser Addit. Manuf.
, pp.
351
371
.
36.
Diaz
,
A.
,
2019
, “
Surface Texture Characterization and Optimization of Metal Additive Manufacturing-Produced Components for Aerospace Applications
,”
Addit. Manuf. Aerospace Ind.
, pp.
341
374
.
37.
Savitha
,
U.
,
Srinivas
,
V.
,
Reddy
,
G. J.
,
Gokhale
,
A. A.
, and
Sundararaman
,
M.
,
2018
, “
Additive Laser Deposition of YSZ on Ni Base Superalloy for Thermal Barrier Application
,”
Surf. Coat. Technol.
,
354
, pp.
257
267
.
38.
Feuerstein
,
A.
,
Knapp
,
J.
,
Taylor
,
T.
,
Ashary
,
A.
,
Bolcavage
,
A.
, and
Hitchman
,
N.
,
2008
, “
Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review
,”
J. Therm. Spray Technol.
,
17
(
2
), pp.
199
213
.
39.
Gell
,
M.
,
Wang
,
J.
,
Kumar
,
R.
,
Roth
,
J.
,
Jiang
,
C.
, and
Jordan
,
E. H.
,
2018
, “
Higher Temperature Thermal Barrier Coatings With the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process
,”
J. Therm. Spray Technol.
,
27
(
4
), pp.
543
555
.
40.
Sahasrabudhe
,
H.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2018
, “
Laser-Based Additive Manufacturing Processes
,”
Adv. Laser Mater. Process.
, pp.
507
539
.
41.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
42.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
.
43.
Kenel
,
C.
,
Schloth
,
P.
,
Van Petegem
,
S.
,
Fife
,
J. L.
,
Grolimund
,
D.
,
Menzel
,
A.
,
Van Swygenhoven
,
H.
, and
Leinenbach
,
C.
,
2016
, “
In Situ Synchrotron X-ray Diffraction and Small Angle X-ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating
,”
JOM
,
68
(
3
), pp.
978
984
.
44.
Ettefagh
,
A. H.
, and
Guo
,
S.
,
2018
, “
Electrochemical Behavior of AISI316L Stainless Steel Parts Produced by Laser-Based Powder Bed Fusion Process and the Effect of Post Annealing Process
,”
Addit. Manuf.
,
22
, pp.
153
156
. .
45.
Li
,
W.
,
Yan
,
L.
,
Chen
,
X.
,
Zhang
,
J.
,
Zhang
,
X.
, and
Liou
,
F.
,
2018
, “
Directed Energy Depositing a New Fe-Cr-Ni Alloy With Gradually Changing Composition With Elemental Powder Mixes and Particle Size Effect in Fabrication Process
,”
J. Mater. Process. Technol.
,
255
, pp.
96
104
.
46.
Wang
,
Z.
,
Lin
,
X.
,
Kang
,
N.
,
Chen
,
J.
,
Tang
,
Y.
,
Tan
,
H.
,
Yu
,
X.
,
Yang
,
H.
, and
Huang
,
W.
,
2021
, “
Directed Energy Deposition Additive Manufacturing of a Sc/Zr-Modified Al–Mg Alloy: Effect of Thermal History on Microstructural Evolution and Mechanical Properties
,”
Mater. Sci. Eng. A
,
802
, pp.
9
14
.
47.
Sridharan
,
N.
,
Cakmak
,
E.
, and
Dehoff
,
R. R.
,
2019
, “
Microstructure Evolution During Laser Direct Energy Deposition of a Novel Fe-Cr-Ni-WB Hardfacing Coating
,”
Surf. Coat. Technol.
,
358
, pp.
362
370
.
48.
Moorehead
,
M.
,
Kaila
,
B.
,
Niezgoda
,
M.
,
Parkin
,
C.
,
Elbakhshwan
,
M.
,
Sridharan
,
K.
,
Zhang
,
C.
,
Thoma
,
D.
, and
Couet
,
A.
,
2020
, “
High-Throughput Synthesis of Mo-Nb-Ta-W High-Entropy Alloys via Additive Manufacturing
,”
Mater. Des.
,
187
.
49.
Agrawal
,
A. K.
,
Meric de Bellefon
,
G.
, and
Thoma
,
D.
,
2020
, “
High-Throughput Experimentation for Microstructural Design in Additively Manufactured 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
793
.
50.
Fereiduni
,
E.
,
Yakout
,
M.
, and
Elbestawi
,
M.
,
2019
, “Laser-Based Additive Manufacturing of Lightweight Metal Matrix Composites,”
Additive Manufacturing of Emerging Materials
,
Springer
,
Cham
, pp.
55
109
.
51.
Tepylo
,
N.
,
Huang
,
X.
, and
Patnaik
,
P. C.
,
2019
, “
Laser-Based Additive Manufacturing Technologies for Aerospace Applications
,”
Adv. Eng. Mater.
,
21
(
11
), pp.
1900617
.
52.
Fayazfar
,
H.
,
Salarian
,
M.
,
Rogalsky
,
A.
,
Sarker
,
D.
,
Russo
,
P.
,
Paserin
,
V.
, and
Toyserkani
,
E.
,
2018
, “
A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties
,”
Mater. Des.
,
144
, pp.
98
128
.
53.
Traxel
,
K. D.
, and
Bandyopadhyay
,
A.
,
2020
, “
Influence of In situ Ceramic Reinforcement Towards Tailoring Titanium Matrix Composites Using Laser-Based Additive Manufacturing
,”
Addit. Manuf.
,
31
, p.
101004
. .
54.
Bandyopadhyay
,
A.
, and
Heer
,
B.
,
2018
, “
Additive Manufacturing of Multi-Material Structures
,”
Mater. Sci. Eng.: R: Rep.
,
129
, pp.
1
16
.
55.
Whitehead
,
J.
, and
Lipson
,
H.
,
2020
, “
Inverted Multi-Material Laser Sintering
,”
Addit. Manuf.
,
36
, pp.
2
9
.
56.
Li
,
Z.
,
Chen
,
J.
,
Sui
,
S.
,
Zhong
,
C.
,
Lu
,
X.
, and
Lin
,
X.
,
2020
, “
The Microstructure Evolution and Tensile Properties of Inconel 718 Fabricated by High-Deposition-Rate Laser Directed Energy Deposition
,”
Addit. Manuf.
,
31
, pp.
1
8
.
57.
Wolff
,
S.
,
Lee
,
T.
,
Faierson
,
E.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2016
, “
Anisotropic Properties of Directed Energy Deposition (DED)-Processed Ti–6Al–4 V
,”
J. Manuf. Process.
,
24
, pp.
397
405
.
58.
Khayat
,
Z. R.
, and
Palmer
,
T. A.
,
2018
, “
Impact of Iron Composition on the Properties of an Additively Manufactured Solid Solution Strengthened Nickel Base Alloy
,”
Mater. Sci. Eng.: A
,
718
, pp.
123
134
.
59.
Ribeiro
,
K. S. B.
,
Mariani
,
F. E.
, and
Coelho
,
R. T.
,
2020
, “
A Study of Different Deposition Strategies in Direct Energy Deposition (DED) Processes
,”
Proc. Manuf.
,
48
, pp.
663
670
.
60.
Pereira
,
J. C.
,
Zambrano
,
J. C.
,
Rayón
,
E.
,
Yañez
,
A.
, and
Amigó
,
V.
,
2018
, “
Mechanical and Microstructural Characterization of MCrAlY Coatings Produced by Laser Cladding: The Influence of the Ni, Co and Al Content
,”
Surf. Coat. Technol.
,
338
, pp.
22
31
.
61.
Liu
,
W.
, and
Dupont
,
J. N.
,
2003
, “
In-Situ Reactive Processing of Nickel Aluminides by Laser-Engineered Net Shaping
,”
Metall. Mater. Trans. A
,
34
(
11
), pp.
2633
2641
.
62.
Zhang
,
J.
,
Gao
,
J.
,
Song
,
B.
,
Zhang
,
L.
,
Han
,
C.
,
Cai
,
C.
,
Zhou
,
K.
, and
Shi
,
Y.
,
2021
, “
A Novel Crack-Free Ti-Modified Al-Cu-Mg Alloy Designed for Selective Laser Melting
,”
Addit. Manuf.
,
38
, pp.
2
11
.
63.
Andersson
,
J. O.
,
Helander
,
T.
,
Höglund
,
L.
,
Shi
,
P.
, and
Sundman
,
B.
,
2002
, “
Thermo-Calc & DICTRA, Computational Tools for Materials Science
,”
Calphad
,
26
(
2
), pp.
273
312
.
64.
Smith
,
J.
,
Xiong
,
W.
,
Yan
,
W.
,
Lin
,
S.
,
Cheng
,
P.
,
Kafka
,
O. L.
,
Wagner
,
G. J.
,
Cao
,
J.
, and
Liu
,
W. K.
,
2016
, “
Linking Process, Structure, Property, and Performance for Metal-Based Additive Manufacturing: Computational Approaches With Experimental Support
,”
Comput. Mech.
,
57
(
4
), pp.
583
610
.
65.
Seo
,
S. M.
,
Lee
,
J. H.
,
Yoo
,
Y. S.
,
Jo
,
C. Y.
,
Miyahara
,
H.
, and
Ogi
,
K.
,
2011
, “
A Comparative Study of the γ/γ′ Eutectic Evolution During the Solidification of Ni-Base Superalloys
,”
Metall. Mater. Trans. A
,
42
(
10
), pp.
3150
3159
.
66.
Schaffnit
,
P.
,
Stallybrass
,
C.
,
Konrad
,
J.
,
Stein
,
F.
, and
Weinberg
,
M.
,
2015
, “
A Scheil–Gulliver Model Dedicated to the Solidification of Steel
,”
Calphad
,
48
, pp.
184
188
.
67.
Boettinger
,
W. J.
,
2016
, “
The Solidification of Multicomponent Alloys
,”
J. Phase Equilib. Diffus.
,
37
(
1
), pp.
4
18
.
68.
Keller
,
T.
,
Lindwall
,
G.
,
Ghosh
,
S.
,
Ma
,
L.
,
Lane
,
B. M.
,
Zhang
,
F.
,
Kattner
,
U. R.
, et al
,
2017
, “
Application of Finite Element, Phase-Field, and CALPHAD-Based Methods to Additive Manufacturing of Ni-Based Superalloys
,”
Acta Mater.
,
139
, pp.
244
253
.
69.
Sargent
,
N.
,
Jones
,
M.
,
Otis
,
R.
,
Shaprio
,
A. A.
,
Deplanque
,
J.
, and
Xiong
,
W.
,
2021
, “
Integration of Processing and Microstructure Models for Non-Equilibrium Solidification in Additive Manufacturing
,”
Metals
,
11
(
4
), p.
570
.
70.
Grange
,
D.
,
Bartout
,
J. D.
,
Macquaire
,
B.
, and
Colin
,
C.
,
2020
, “
Processing a Non-Weldable Nickel-Base Superalloy by Selective Laser Melting: Role of the Shape and Size of the Melt Pools on Solidification Cracking
,”
Materialia
,
12
, pp.
100686
.
71.
Chen
,
Y.
,
Lu
,
F.
,
Zhang
,
K.
,
Nie
,
P.
,
Hosseini
,
S. R. E.
,
Feng
,
K.
,
Li
,
Z.
, and
Chu
,
P. K.
,
2016
, “
Investigation of Dendritic Growth and Liquation Cracking in Laser Melting Deposited Inconel 718 at Different Laser Input Angles
,”
Mater. Des.
,
105
, pp.
133
141
.
72.
Yusof
,
F.
, and
Jamaluddin
,
M. F.
,
2014
, “
Welding Defects and Implications on Welded Assemblies
,”
Comprehensive Mater. Process.
, pp.
125
134
.
73.
Lu
,
N.
,
Lei
,
Z.
,
Hu
,
K.
,
Yu
,
X.
,
Li
,
P.
,
Bi
,
J.
,
Wu
,
S.
, and
Chen
,
Y.
,
2020
, “
Hot Cracking Behavior and Mechanism of a Third-Generation Ni-Based Single-Crystal Superalloy During Directed Energy Deposition
,”
Addit. Manuf.
,
34
, pp.
1
12
.
74.
Li
,
Y.
,
Chen
,
K.
, and
Tamura
,
N.
,
2018
, “
Mechanism of Heat Affected Zone Cracking in Ni-Based Superalloy DZ125L Fabricated by Laser 3D Printing Technique
,”
Mater. Des.
,
150
, pp.
171
181
.
75.
Ogawa
,
T.
,
1991
, “
Prevention of Weld Hot Cracking
,”
Weld. Int.
,
5
(
12
), pp.
931
935
.
76.
Zhang
,
X.
,
Chen
,
H.
,
Xu
,
L.
,
Xu
,
J.
,
Ren
,
X.
, and
Chen
,
X.
,
2019
, “
Cracking Mechanism and Susceptibility of Laser Melting Deposited Inconel 738 Superalloy
,”
Mater. Des.
,
183
.
77.
Zhao
,
X.
,
Lin
,
X.
,
Chen
,
J.
,
Xue
,
L.
, and
Huang
,
W.
,
2009
, “
The Effect of Hot Isostatic Pressing on Crack Healing, Microstructure, Mechanical Properties of Rene88DT Superalloy Prepared by Laser Solid Forming
,”
Mater. Sci. Eng. A
,
504
(
1–2
), pp.
129
134
.
78.
Kou
,
S.
,
2015
, “
A Simple Index for Predicting the Susceptibility to Solidification Cracking
,”
Weld. J.
,
94
(
12
), pp.
374
388
.
79.
Falcón
,
J. C. P.
,
Echeverría
,
A.
,
Afonso
,
C. R. M.
,
Carrullo
,
J. C. Z.
, and
Borrás
,
V. A.
,
2019
, “
Microstructure Assessment at High Temperature in NiCoCrAlY Overlay Coating Obtained by Laser Metal Deposition
,”
J. Mater. Res. Technol.
,
8
(
2
), pp.
1761
1772
.
80.
Jackson
,
G. A.
,
Sun
,
W.
, and
McCartney
,
D. G.
,
2019
, “
The Influence of Microstructure on the Ductile to Brittle Transition and Fracture Behaviour of HVOF NiCoCrAlY Coatings Determined via Small Punch Tensile Testing
,”
Mater. Sci. Eng. A
,
754
, pp.
479
490
.
81.
Luo
,
L.
,
Shan
,
X.
,
Zou
,
Z.
,
Zhao
,
C.
,
Wang
,
X.
,
Zhang
,
A.
,
Zhao
,
X.
,
Guo
,
F.
, and
Xiao
,
P.
,
2017
, “
A High Performance NiCoCrAlY Bond Coat Manufactured Using Laser Powder Deposition
,”
Corros. Sci.
,
126
, pp.
356
365
.
82.
Pereira
,
J. C.
,
Zambrano
,
J. C.
,
Tobar
,
M. J.
,
Yañez
,
A.
, and
Amigó
,
V.
,
2015
, “
High Temperature Oxidation Behavior of Laser Cladding MCrAlY Coatings on Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
270
, pp.
243
248
.
83.
Zhang
,
Q.
,
Xie
,
J.
,
Gao
,
Z.
,
London
,
T.
,
Griffiths
,
D.
, and
Oancea
,
V.
,
2019
, “
A Metallurgical Phase Transformation Framework Applied to SLM Additive Manufacturing Processes
,”
Mater. Des.
,
166
.
84.
Kumara
,
C.
,
Balachandramurthi
,
A. R.
,
Goel
,
S.
,
Hanning
,
F.
, and
Moverare
,
J.
,
2020
, “
Toward a Better Understanding of Phase Transformations in Additive Manufacturing of Alloy 718
,”
Materialia
,
13
, p.
100862
.
85.
McNamara
,
K.
,
2018
, “
Modeling the Microstructural Evolution of Parts During Metal Additive Manufacturing
,”
Pennsylvania State University Libraries
.
86.
Baykasoğlu
,
C.
,
Akyildiz
,
O.
,
Tunay
,
M.
, and
To
,
A. C.
,
2020
, “
A Process-Microstructure Finite Element Simulation Framework for Predicting Phase Transformations and Microhardness for Directed Energy Deposition of Ti6Al4V
,”
Addit. Manuf.
,
35
, p.
101252
. .
87.
Vastola
,
G.
,
Zhang
,
G.
,
Pei
,
Q. X.
, and
Zhang
,
Y. W.
,
2016
, “
Modeling the Microstructure Evolution During Additive Manufacturing of Ti6Al4V: A Comparison Between Electron Beam Melting and Selective Laser Melting
,”
JOM
,
68
(
5
), pp.
1370
1375
.
88.
Pankov
,
V.
,
Seo
,
D.
,
Lee
,
S.
, and
Byon
,
E.
,
2020
, “
Investigation of Spitting Behaviour of NiCoCrAlY Type Materials During Electron Beam Evaporation
,”
Mater. Sci. Technol.
,
36
(
5
), pp.
564
574
.
89.
Nijdam
,
T. J.
,
Kwakernaak
,
C.
, and
Sloof
,
W. G.
,
2006
, “
The Effects of Alloy Microstructure Refinement on the Short-Term Thermal Oxidation of NiCoCrAlY Alloys
,”
Metall. Mater. Trans. A
,
37
(
3
), pp.
683
693
.
You do not currently have access to this content.