Abstract

Flat clinched joints are increasingly being investigated due to the flat bottom surface. In the current study, the shape of the flat clinching tools was optimized to improve the joint strength. Experimental tests of flat clinching were carried out using different forming loads to provide validation data for finite element simulations. Cross-tension tests were conducted under quasi-static conditions to evaluate the mechanical characteristics of the joint samples. Multiple finite element models based on the response surface method were developed to obtain the functional relationship between the four tool parameters and neck area, as well as the functional relationship between the four parameters and undercut area, respectively. The geometric effects of the flat clinching tools on the neck and undercut areas were analyzed. A genetic algorithm was used to obtain a solution set that maximized both the neck and undercut areas. The cross-tension strength of the joint produced according to the best-tested solution was 1526 N, which was 13.7% higher than that of the pre-optimized joint. The optimization method in this study could effectively improve the joint strength of the flat clinching process.

References

1.
He
,
X. C.
,
2017
, “
Clinching for Sheet Materials
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
381
405
.
2.
Eshtayeh
,
M. M.
, and
Hrairi
,
M.
,
2016
, “
Recent and Future Development of the Application of Finite Element Analysis in Clinching Process
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
2589
2608
.
3.
Zhang
,
J.
,
Pang
,
Z.-Y.
,
Wang
,
L.
,
Sun
,
C.-C.
,
Liu
,
N.
,
Chen
,
H.-M.
,
Cheng
,
Z.-X.
, and
Li
,
K.
,
2020
, “
Microstructure and Properties Evolution of Al-17Si-2Fe Alloys With Addition of Quasicrystal Al-Mn-Ti Master Alloy
,”
Rare Met.
,
39
(
10
), pp.
1210
1221
.
4.
Wu
,
X.
,
Wang
,
J.
,
Zhang
,
Y.
,
Du
,
J.
,
Liu
,
Z.
, and
Chen
,
Y.
,
2021
, “
Review of DC-DC Converter Topologies Based on Impedance Network With Wide Input Voltage Range and High Gain for Fuel Cell Vehicles
,”
Automot. Innov.
,
4
(
4
), pp.
351
372
.
5.
Han
,
L.
,
Chrysanthou
,
A.
, and
Young
,
K.
,
2007
, “
Mechanical Behaviour of Self-Piercing Riveted Multi-Layer Joints Under Different Specimen Configurations
,”
Mater Des.
,
28
(
7
), pp.
2024
2033
.
6.
Coppieters
,
S.
,
Zhang
,
H.
,
Xu
,
F.
,
Vandermeiren
,
N.
,
Breda
,
A.
, and
Debruyne
,
D.
,
2017
, “
Process-Induced Bottom Defects in Clinch Forming: Simulation and Effect on the Structural Integrity of Single Shear Lap Specimens
,”
Mater Des.
,
130
, pp.
336
348
.
7.
He
,
X. C.
,
Liu
,
F. L.
,
Xing
,
B. Y.
,
Yang
,
H. Y.
,
Wang
,
Y. Q.
,
Gu
,
F. S.
, and
Ball
,
A.
,
2014
, “
Numerical and Experimental Investigations of Extensible Die Clinching
,”
Int. J. Adv. Manuf. Technol.
,
74
(
9–12
), pp.
1229
1236
.
8.
Xue
,
Q.
,
Yang
,
D.
,
Jiang
,
L.
,
Li
,
B.
, and
Ming
,
P.
,
2021
, “
Modifying Carbon Supports of Catalyst for the Oxygen Reduction Reaction in Vehicle PEMFCs
,”
Automot. Innov.
,
4
(
2
), pp.
119
130
.
9.
Abe
,
Y.
,
Kato
,
T.
,
Mori
,
K.
, and
Nishino
,
S.
,
2014
, “
Mechanical Clinching of Ultra-High Strength Steel Sheets and Strength of Joints
,”
J. Mater. Process. Technol.
,
214
(
10
), pp.
2112
2118
.
10.
Abe
,
Y.
,
Nihsino
,
S.
,
Mori
,
K.
, and
Saito
,
T.
,
2014
, “
Improvement of Joinability in Mechanical Clinching of Ultra-High Strength Steel Sheets Using Counter Pressure With Ring Rubber
,”
Proceeding 11th International Conference on Technology of Plasticity
,
Nagoya, Japan
,
Oct. 19–24
, pp.
2056
2061
.
11.
Abe
,
Y.
,
Saito
,
T.
,
Mori
,
K. I.
, and
Kato
,
T.
,
2018
, “
Mechanical Clinching With Dies for Control of Metal Flow of Ultra-High-Strength Steel and High-Strength Steel Sheets
,”
Proc. Inst. Mech. Eng. B
,
232
(
4
), pp.
644
649
.
12.
Huang
,
G.
,
Li
,
Z.-H.
,
Sun
,
L.-M.
,
Li
,
X.-W.
,
Wen
,
K.
,
Yan
,
L.-Z.
,
Xiong
,
B.-Q.
, and
Zhang
,
Y.-A.
,
2021
, “
Fatigue Crack Growth Behavior of 2624-T39 Aluminum Alloy With Different Grain Sizes
,”
Rare Met.
,
40
(
9
), pp.
2523
2529
.
13.
Gerstmann
,
T.
, and
Awiszus
,
B.
,
2014
, “
Recent Developments in Flat-Clinching
,”
Comp. Mater. Sci.
,
81
, pp.
39
44
.
14.
Neugebauer
,
R.
,
Todtermuschke
,
M.
,
Mauermann
,
R.
, and
Riedel
,
F.
,
2008
, “
Overview on the State of Development and the Application Potential of Dieless Mechanical Joining Processes
,”
Arch. Civ. Mech. Eng.
,
8
(
4
), pp.
51
60
.
15.
Hamel
,
V.
,
Roelandt
,
J. M.
,
Gacel
,
J. N.
, and
Schmit
,
F.
,
2000
, “
Finite Element Modeling of Clinch Forming With Automatic Remeshing
,”
Comput. Struct.
,
77
(
2
), pp.
185
200
.
16.
Coppieters
,
S.
,
Cooreman
,
S.
,
Lava
,
P.
,
Sol
,
H.
,
Van Houtte
,
P.
, and
Debruyne
,
D.
,
2011
, “
Reproducing the Experimental Pull-Out and Shear Strength of Clinched Sheet Metal Connections Using FEA
,”
Int. J. Mater. Form.
,
4
(
4
), pp.
429
440
.
17.
Lambiase
,
F.
,
2012
, “
Influence of Process Parameters in Mechanical Clinching With Extensible Dies
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
2123
2131
.
18.
Atia
,
S. M. K.
, and
and Jain
,
M. K.
,
2018
, “
A Parametric Study of FE Modeling of Die-Less Clinching of AA7075 Aluminum Sheets
,”
Thin-Walled Struct.
,
132
, pp.
717
728
.
19.
Zhao
,
S.
,
Xu
,
F.
,
Guo
,
J.
, and
Han
,
X.
,
2014
, “
Experimental and Numerical Research for the Failure Behavior of the Clinched Joint Using Modified Rousselier Model
,”
J. Mater. Process. Technol.
,
214
(
10
), pp.
2134
2145
.
20.
Xu
,
F.
,
Zhao
,
S.
, and
Han
,
X.
,
2014
, “
Use of a Modified Gurson Model for the Failure Behaviour of the Clinched Joint on Al6061 Sheet
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
3
), pp.
335
348
.
21.
Luder
,
S.
,
Hartel
,
S.
,
Binotsch
,
C.
, and
Awiszus
,
B.
,
2014
, “
Influence of the Moisture Content on Flat-Clinch Connection of Wood Materials and Aluminium
,”
J. Mater. Process. Technol.
,
214
(
10
), pp.
2069
2074
.
22.
Chen
,
C.
,
Zhao
,
S. D.
,
Han
,
X. L.
,
Wang
,
Y.
, and
Zhao
,
X.
,
2017
, “
Investigation of Flat Clinching Process Combined With Material Forming Technology for Aluminum Alloy
,”
Materials
,
10
(
12
), p.
1433
.
23.
Chen
,
C.
,
Zhang
,
H. Y.
,
Zhao
,
S.
, and
Ren
,
X.
,
2021
, “
Effects of Sheet Thickness and Material on the Mechanical Properties of Flat Clinched Joint
,”
Front. Mech. Eng.
,
16
(
2
), pp.
410
419
.
24.
Chen
,
C.
,
Zhang
,
H.
,
Ren
,
X.
, and
Wu
,
J.
,
2021
, “
Investigation of Flat-Clinching Process Using Various Thicknesses Aluminum Alloy Sheets
,”
Int. J. Adv. Manuf. Technol.
,
114
(
7–8
), pp.
2075
2084
.
25.
Chen
,
C.
,
Zhang
,
H.
,
Qin
,
D.
, and
Li
,
H.
,
2021
, “
Joining Different Aluminum Alloy Sheets by Flat Clinching Process
,”
Int. J. Adv. Manuf. Technol.
,
116
(
3–4
), pp.
1071
1079
.
26.
Gerstmann
,
T.
, and
Awiszus
,
B.
,
2020
, “
Hybrid Joining: Numerical Process Development of Flat-Clinch-Bonding
,”
J. Mater. Process. Technol.
,
277
, p.
116421
.
27.
Lee
,
C. J.
,
Kim
,
J. Y.
,
Lee
,
S. K.
,
Ko
,
D. C.
, and
Kim
,
B. M.
,
2010
, “
Design of Mechanical Clinching Tools for Joining of Aluminium Alloy Sheets
,”
Mater Des.
,
31
(
4
), pp.
1854
1861
.
28.
Lei
,
L.
,
He
,
X. C.
,
Yu
,
T. X.
, and
Xing
,
B. Y.
,
2019
, “
Failure Modes of Mechanical Clinching in Metal Sheet Materials
,”
Thin-Walled Struct.
,
144
, p.
106281
.
29.
Han
,
X. L.
,
Zhao
,
S. D.
,
Chen
,
C.
,
Liu
,
C.
, and
Xu
,
F.
,
2017
, “
Optimization of Geometrical Design of Clinching Tools in Flat-Clinching
,”
J. Mech. Eng. Sci.
,
231
(
21
), pp.
4012
4021
.
You do not currently have access to this content.