Abstract

Permanent magnets are expected to play a crucial role in the realization of the clean economy. In particular, the neodymium–iron–boron (Nd2Fe14B or NdFeB) magnets, which have the highest energy density among rare earth permanent magnets, are needed for building more efficient windmill generators, electric vehicle motors, etc. Currently, near-net shape magnets can be either made through sintering and compression molding with extensive post machining or directly through injection molding. However, injection molding has a loading volume fraction limitation of 0.65 for nylon binders. A novel method of manufacturing bonded permanent magnets with loading fraction greater than 0.65 has been demonstrated using big area additive manufacturing (BAAM) printers. As energy density is directly proportional to the square of the magnet loading fraction, magnets produced using BAAM printers require less volume and magnetic material compared to that of injection molded magnets on average. A comparative life cycle assessment shows that this difference in magnetic powder consumption nearly constitutes the difference in the environmental impact categories. Even after assuming recycled magnetic input, the BAAM magnets perform better environmentally than injection molded magnets, especially in the ozone depletion category. Since BAAM printers can accommodate even higher loading fractions, at scale, BAAM printers possibly can bring about a significant decrease in rare earth mineral consumption and environmental emissions. Furthermore, single screw extrusion enables BAAM printers to have high print speeds and allow them to be economically competitive against injection molding. Therefore, BAAM printed magnets show great promise in transitioning towards the clean economy.

References

1.
Gutfleisch
,
O.
,
Willard
,
M. A.
,
Brück
,
E.
,
Chen
,
C. H.
,
Sankar
,
S. G.
, and
Liu
,
J. P.
,
2011
, “
Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient
,”
Adv. Mater.
,
23
(
7
), pp.
821
842
.
2.
DOE
, “
Critical Materials Rare Earths Supply Chain: A Situational White Paper 2020
,” https://www.energy.gov/sites/prod/files/2020/04/f73/Critical%20Materials%20Supply%20Chain%20White%20Paper%20April%202020.pdf, Accessed November 2, 2021.
3.
Yang
,
Y.
,
Walton
,
A.
,
Sheridan
,
R.
,
Güth
,
K.
,
Gauß
,
R.
,
Gutfleisch
,
O.
,
Buchert
,
M.
, et al
,
2017
, “
REE Recovery From End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review
,”
J. Sustain. Metall.
,
3
(
1
), pp.
122
149
.
4.
Alonso
,
E.
,
Sherman
,
A. M.
,
Wallington
,
T. J.
,
Everson
,
M. P.
,
Field
,
F. R.
,
Roth
,
R.
, and
Kirchain
,
R. E.
,
2012
, “
Evaluating Rare Earth Element Availability: A Case With Revolutionary Demand From Clean Technologies
,”
Environ. Sci. Technol.
,
46
(
6
), pp.
3406
3414
.
6.
Nichols
,
R.
, “
Final List of Critical Minerals 2018
,” Fed Regist 2018. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-critical-minerals-2018, Accessed October 11, 2021.
7.
Brown
,
D.
,
Ma
,
B.-M.
, and
Chen
,
Z.
,
2002
, “
Developments in the Processing and Properties of NdFeb-Type Permanent Magnets
,”
J. Magn. Magn. Mater.
,
248
(
3
), pp.
432
440
.
8.
Cui
,
J.
,
Ormerod
,
J.
,
Parker
,
D.
,
Ott
,
R.
,
Palasyuk
,
A.
,
Mccall
,
S.
,
Parans
,
M.
, et al
,
2022
, “
Manufacturing Processes for Permanent Magnets: Part I—Sintering and Casting
,”
JOM
,
74
, pp.
1279
1295
.
9.
Cui
,
J.
,
Ormerod
,
J.
,
Parker
,
D. S.
,
Ott
,
R.
,
Palasyuk
,
A.
,
McCall
,
S.
,
Parans
,
M.
, et al
,
2022
, “
Manufacturing Processes for Permanent Magnets: Part II—Bonding and Emerging Methods
,”
JOM
,
74
, pp.
2492
2506
.
10.
Ormerod
,
J.
, and
Constantinides
,
S.
,
1997
, “
Bonded Permanent Magnets: Current Status and Future Opportunities
,”
J. Appl. Phys.
,
81
(
8
), pp.
4816
4820
.
11.
Wang
,
H.
,
Lamichhane
,
T. N.
, and
Paranthaman
,
M. P.
,
2022
, “
Review of Additive Manufacturing of Permanent Magnets for Electrical Machines: A Prospective on Wind Turbine
,”
Mater. Today Phys.
,
24
, p.
100675
.
12.
Li
,
L.
,
Tirado
,
A.
,
Nlebedim
,
I. C.
,
Rios
,
O.
,
Post
,
B.
,
Kunc
,
V.
,
Lowden
,
R. R.
, et al
,
2016
, “
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
,”
Sci. Rep.
,
6
(
1
), p.
36212
.
13.
Li
,
L.
,
Post
,
B.
,
Kunc
,
V.
,
Elliott
,
A. M.
, and
Paranthaman
,
M. P.
,
2017
, “
Additive Manufacturing of Near-Net-Shape Bonded Magnets: Prospects and Challenges
,”
Scr. Mater.
,
135
, pp.
100
104
.
14.
Paranthaman
,
M. P.
,
Yildirim
,
V.
,
Lamichhane
,
T. N.
,
Begley
,
B. A.
,
Post
,
B. K.
,
Hassen
,
A. A.
,
Sales
,
B. C.
,
Gandha
,
K.
, and
Nlebedim
,
I. C.
,
2020
, “
Additive Manufacturing of Isotropic NdFeB PPS Bonded Permanent Magnets
,”
Materials
,
13
(
15
), p.
3319
.
15.
Gutowski
,
T.
,
Jiang
,
S.
,
Cooper
,
D.
,
Corman
,
G.
,
Hausmann
,
M.
,
Manson
,
J.-A.
,
Schudeleit
,
T.
, et al
,
2017
, “
Note on the Rate and Energy Efficiency Limits for Additive Manufacturing
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S69
79
.
16.
Chesser
,
P.
,
Post
,
B.
,
Roschli
,
A.
,
Carnal
,
C.
,
Lind
,
R.
,
Borish
,
M.
, and
Love
,
L.
,
2019
, “
Extrusion Control for High Quality Printing on Big Area Additive Manufacturing (BAAM) Systems
,”
Addit. Manuf.
,
28
, pp.
445
455
. .
17.
Sprecher
,
B.
,
Xiao
,
Y.
,
Walton
,
A.
,
Speight
,
J.
,
Harris
,
R.
,
Kleijn
,
R.
,
Visser
,
G.
, and
Kramer
,
J.
,
2014
, “
Life Cycle Inventory of the Production of Rare Earths and the Subsequent Production of NdFeB Rare Earth Permanent Magnets
,”
Environ. Sci. Technol.
,
48
(
7
),
3951
3958
.
18.
Jin
,
H.
,
Afiuny
,
P.
,
McIntyre
,
T.
,
Yih
,
Y.
, and
Sutherland
,
J. W.
,
2016
, “
Comparative Life Cycle Assessment of NdFeB Magnets: Virgin Production Versus Magnet-to-Magnet Recycling
,”
Proc. CIRP
,
48
, pp.
45
50
.
19.
Langkau
,
S.
, and
Erdmann
,
M.
,
2021
, “
Environmental Impacts of the Future Supply of Rare Earths for Magnet Applications
,”
J. Ind. Ecol.
,
25
(
4
), pp.
1034
1050
.
20.
Arshi
,
P. S.
,
Vahidi
,
E.
, and
Zhao
,
F.
,
2018
, “
Behind the Scenes of Clean Energy: The Environmental Footprint of Rare Earth Products
,”
ACS Sustain. Chem. Eng.
,
6
(
3
), pp.
3311
3320
.
21.
ISO E. 14040:2006
, “
Environmental Management Life Cycle Assessment—Principles Framework
.” Eur. Comm. Stand. 2006.
22.
Coey
,
J. M. D.
,
2002
, “
Permanent Magnet Applications
,”
J. Magn. Magn. Mater.
,
248
(
3
), pp.
441
456
.
23.
Ireland
,
J. R.
,
1967
, “
New Figure of Merit for Ceramic Permanent Magnet Material Intended for DC Motor Applications
,”
J. Appl. Phys.
,
38
(
3
), pp.
1011
1012
.
24.
Binns
,
K. J.
, and
Shimmin
,
D. W.
,
1996
, “
Relationship Between Rated Torque and Size of Permanent Magnet Machines
,”
IEE Proc. Electr. Power Appl.
,
143
(
24
), pp.
417
422
.
25.
Ma
,
B. M.
,
Herchenroeder
,
J. W.
,
Smith
,
B.
,
Suda
,
M.
,
Brown
,
D. N.
, and
Chen
,
Z.
,
2002
, “
Recent Development in Bonded NdFeB Magnets
,”
J. Magn. Magn. Mater.
,
239
(
1–3
), pp.
418
423
.
26.
Garrell
,
M. G.
,
Shih
,
A. J.
,
Ma
,
B.-M.
,
Lara-Curzio
,
E.
, and
Scattergood
,
R. O.
,
2003
, “
Mechanical Properties of Nylon Bonded Nd–Fe–B Permanent Magnets
,”
J. Magn. Magn. Mater.
,
257
(
7
), pp.
32
43
.
27.
Gandha
,
K.
,
Nlebedim
,
I. C.
,
Kunc
,
V.
,
Lara-Curzio
,
E.
,
Fredette
,
R.
, and
Paranthaman
,
M. P.
,
2020
, “
Additive Manufacturing of Highly Dense Anisotropic Nd–Fe–B Bonded Magnets
,”
Scr. Mater.
,
183
, pp.
91
95
.
28.
Li
,
L.
,
Jones
,
K.
,
Sales
,
B.
,
Pries
,
J. L.
,
Nlebedim
,
I. C.
,
Jin
,
K.
,
Bei
,
H.
, et al
,
2018
, “
Fabrication of Highly Dense Isotropic Nd–Fe–B Nylon Bonded Magnets Via Extrusion-Based Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
495
500
.
29.
Polyamide 6—Nylon 6—PA 6
, “
AZoMCom 2001
.” https://www.azom.com/article.aspx?ArticleID=442, Accessed November 2, 2021.
30.
Wernet
,
G.
,
Bauer
,
C.
,
Steubing
,
B.
,
Reinhard
,
J.
,
Moreno-Ruiz
,
E.
, and
Weidema
,
B.
,
2016
, “
The Ecoinvent Database Version 3 (Part I): Overview and Methodology
,”
Int. J. Life Cycle Assess.
,
21
(
9
), pp.
1218
1230
.
31.
Piccinno
,
F.
,
Hischier
,
R.
,
Seeger
,
S.
, and
Som
,
C.
,
2016
, “
From Laboratory to Industrial Scale: A Scale-Up Framework for Chemical Processes in Life Cycle Assessment Studies
,”
J. Clean. Prod.
,
135
, pp.
1085
1097
.
32.
Liang
,
M.
,
Huff
,
H. E.
, and
Hsieh
,
F.-H.
,
2002
, “
Evaluating Energy Consumption and Efficiency of a Twin-Screw Extruder
,”
J. Food Sci.
,
67
(
5
), pp.
1803
1807
.
33.
Rauwendaal
,
C.
,
2014
, “10—Twin Screw Extruders,”
Polymer Extrusion
, 5th ed.,
C.
Rauwendaal
, ed.,
Hanser
, pp.
697
761
.
34.
Merhar
,
J. R.
,
1990
, “
Overview of Metal Injection Moulding
,”
Met. Powder Rep.
,
45
(
5
), pp.
339
342
.
35.
Raoufi
,
K.
,
Harper
,
D. S.
, and
Haapala
,
K. R.
,
2020
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Metal Injection Molding
,”
Prod. Eng.
,
14
(
5–6
), pp.
707
716
.
36.
Specific Heat of some common Substances
,
n.d.
, https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html, Accessed November 2, 2021.
37.
Fiameni
,
S.
,
Battiston
,
S.
,
Castellani
,
V.
,
Barison
,
S.
, and
Armelao
,
L.
,
2021
, “
Implementing Sustainability in Laboratory Activities: A Case Study on Aluminum Titanium Nitride Based Thin Film Magnetron Sputtering Deposition Onto Commercial Laminated Steel
,”
J. Clean. Prod.
,
285
, p.
124869
.
38.
Peng
,
T.
, and
Sun
,
W.
,
2017
, “
Energy Modelling for FDM 3D Printing From a Life Cycle Perspective
,”
Int. J. Manuf. Res.
,
12
(
1
), pp.
83
98
.
39.
Jiang
,
S.
,
2017
, “
Processing Rate and Energy Consumption Analysis for Additive Manufacturing Processes: Material Extrusion and Powder Bed Fusion
,”
Thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
40.
Roschli
,
A. C.
,
2016
, “
Dynamic Extruder Control for Polymer Printing in Big Area
,”
Addit. Manuf.
41.
Post
,
B. K.
,
Lind
,
R. F.
,
Lloyd
,
P. D.
,
Kunc
,
V.
,
Linhal
,
J. M.
, and
Love
,
L. J.
,
2016
, “
The Economics of Big Area Additive Manufacturing
,”
2016 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
,
University of Texas at Austin
.
42.
Gigabot X XLT—re:3D|Life-Sized Affordable 3D Printing
,
n.d.
, https://re3d.org/portfolio/gigabot-x-xlt/, Accessed October 8, 2021.
43.
Bare
,
J.
,
2011
, “
TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0
,”
Clean Technol. Environ. Policy
,
13
(
5
), pp.
687
696
.
44.
IEA
,
2021
,
An Energy Sector Roadmap to Carbon Neutrality in China
,
IEA
,
Paris
.
45.
Gandha
,
K.
,
Ouyang
,
G.
,
Gupta
,
S.
,
Kunc
,
V.
,
Parans Paranthaman
,
M.
, and
Nlebedim
,
I. C.
,
2019
, “
Recycling of Additively Printed Rare-Earth Bonded Magnets
,”
Waste Manage.
,
90
, pp.
94
99
.
46.
Thiriez
,
A.
, and
Gutowski
,
T.
,
2006
, “
An Environmental Analysis of Injection Molding
,”
Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment 2006
,
Scottsdale, AZ
,
May 8–11
, pp.
195
200
.
47.
Paranthaman
,
M. P.
,
Cramer
,
C. L.
,
Nandwana
,
P.
,
Elliott
,
A. M.
, and
Chinnasamy
,
C.
,
2021
, “
Indirect Additive Manufacturing Process for Fabricating Bonded Soft Magnets
.”
48.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
181
189
.
49.
Jacoby
,
M.
, and
Jiang
,
J.
,
2010
, “
Securing the Supply of Rare Earths
,”
Chemical and Engineering News.
https://cen.acs.org/articles/88/i35/Securing-Supply-Rare-Earths.html, Accessed November 2, 2021.
50.
Boom, Bust and Boom Again for Rare Earths?
” Reuters
2017
, https://www.reuters.com/article/us-china-rareearths-ahome-idUSKCN1BC4OF, Accessed November 2, 2021.
You do not currently have access to this content.