Abstract

This study investigates the impact of particle size distribution (PSD) in Scalmalloy® powder feedstocks on the geometrical accuracy, microstructure, defect formation, and mechanical properties of test artifacts fabricated via laser-based powder bed fusion of metals (PBF-LB/M). Two powder feedstocks were analyzed: Powder-1, with a mean particle size of 29.30–29.72 µm and a narrower, more uniform PSD, and Powder-2, with a mean particle size of 40.80–41.53 µm and a broader, more heterogeneous PSD. Powder-2 produced artifacts with improved geometrical accuracy and surface finish but exhibited cracking in both lattice (small features) and bulk regions. Scanning electron microscopy revealed Si precipitation near cracks in the lattice regions, attributed to segregation caused by heat accumulation in thin features and the coarser, more heterogeneous PSD of Powder-2. Powder-2 samples exhibited higher strain at a break during tensile testing, likely due to its lower porosity compared to Powder-1. Single-line and hatch scan results indicated no cracking for either powder, highlighting the susceptibility of small features to thermal gradients, segregation, and geometric stress concentrators. The observation of cracking exclusively in the thin features, and not in the bulk regions, underscores the artifact's utility in investigating how geometrical features influence thermal fields, microstructural evolution, and ultimately, performance in PBF-LB/M processes.

References

1.
McGregor
,
M.
,
Patel
,
S.
,
Zhang
,
K.
,
Yu
,
A.
,
Vlasea
,
M.
, and
McLachlin
,
S.
,
2024
, “
A Manufacturability Evaluation of Complex Architectures by Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
146
(
6
), p.
061007
.
2.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
.
3.
Fiocchi
,
J.
,
Tuissi
,
A.
, and
Biffi
,
C. A.
,
2021
, “
Heat Treatment of Aluminium Alloys Produced by Laser Powder Bed Fusion: A Review
,”
Mater. Des.
,
204
(
15
), p.
109651
.
4.
Montazeri
,
M.
, and
Rao
,
P.
,
2018
, “
Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091002
.
5.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
6.
Rowlands
,
B. S.
,
Rae
,
C.
, and
Galindo-Nava
,
E.
,
2023
, “
The Portevin-Le Chatelier Effect in Nickel-Base Superalloys: Origins, Consequences and Comparison to Strain Ageing in Other Alloy Systems
,”
Prog. Mater. Sci.
,
132
(
12
), p.
101038
.
7.
Galy
,
C.
,
Le Guen
,
E.
,
Lacoste
,
E.
, and
Arvieu
,
C.
,
2018
, “
Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences
,”
Addit. Manuf.
,
22
(
12
), pp.
165
175
.
8.
Cao
,
Y.
,
Wei
,
H. L.
,
Yang
,
T.
,
Liu
,
T. T.
, and
Liao
,
W. H.
,
2021
, “
Printability Assessment With Porosity and Solidification Cracking Susceptibilities for a High Strength Aluminum Alloy During Laser Powder Bed Fusion
,”
Addit. Manuf.
,
46
, p.
102103
.
9.
Zhang
,
H.
,
Gu
,
D.
,
Yang
,
J.
,
Dai
,
D.
,
Zhao
,
T.
,
Hong
,
C.
,
Gasser
,
A.
, and
Poprawe
,
R.
,
2018
, “
Selective Laser Melting of Rare Earth Element Sc Modified Aluminum Alloy: Thermodynamics of Precipitation Behavior and Its Influence on Mechanical Properties
,”
Addit. Manuf.
,
23
, pp.
1
12
.
10.
Wang
,
D.
,
Feng
,
Y.
,
Liu
,
L.
,
Wei
,
X.
,
Yang
,
Y.
,
Yuan
,
P.
,
Liu
,
Y.
,
Han
,
C.
, and
Bai
,
Y.
,
2022
, “
Influence Mechanism of Process Parameters on Relative Density, Microstructure, and Mechanical Properties of Low Sc-Content Al–Mg–Sc–Zr Alloy Fabricated by Selective Laser Melting
,”
Chin. J. Mech. Eng.: Addit. Manuf. Front.
,
1
(
4
), p.
100034
.
11.
Zhang
,
H.
,
Dai
,
D.
,
Xi
,
L.
,
Gökce
,
B.
, and
Gu
,
D.
,
2023
, “
An Opposite Tendency of Mechanical Properties and Corrosion Resistance of a High-Strength Al-5024 Alloy Processed by Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
031001
.
12.
Zhou
,
L.
,
Hyer
,
H.
,
Park
,
S.
,
Pan
,
H.
,
Bai
,
Y.
,
Rice
,
K. P.
, and
Sohn
,
Y.
,
2019
, “
Microstructure and Mechanical Properties of Zr-Modified Aluminum Alloy 5083 Manufactured by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
28
, pp.
485
496
.
13.
Li
,
G.
,
Zhao
,
N.
,
Liu
,
T.
,
Li
,
J.
,
He
,
C.
,
Shi
,
C.
,
Liu
,
E.
, and
Sha
,
J.
,
2014
, “
Effect of Sc/Zr Ratio on the Microstructure and Mechanical Properties of New Type of Al–Zn–Mg–Sc–Zr Alloys
,”
Mater. Sci. Eng. A
,
617
, pp.
219
227
.
14.
Cordova
,
L.
,
Campos
,
M.
, and
Tinga
,
T.
,
2019
, “
Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization
,”
JOM
,
71
(
3
), pp.
1062
1072
.
15.
Cordova
,
L.
,
Bor
,
T.
,
de Smit
,
M.
,
Carmignato
,
S.
,
Campos
,
M.
, and
Tinga
,
T.
,
2020
, “
Effects of Powder Reuse on the Microstructure and Mechanical Behaviour of Al–Mg–Sc–Zr Alloy Processed by Laser Powder Bed Fusion (LPBF)
,”
Addit. Manuf.
,
36
, p.
101625
.
16.
Spierings
,
A. B.
,
Herres
,
N.
, and
Levy
,
G.
,
2011
, “
Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts
,”
Rapid Prototyp. J.
,
17
(
3
), pp.
195
202
.
17.
Taylor
,
H. C.
,
Garibay
,
E. A.
, and
Wicker
,
R. B.
,
2021
, “
Toward a Common Laser Powder Bed Fusion Qualification Test Artifact
,”
Addit. Manuf.
,
39
, p.
101803
.
18.
Vock
,
S.
,
Klöden
,
B.
,
Kirchner
,
A.
,
Weißgärber
,
T.
, and
Kieback
,
B.
,
2019
, “
Powders for Powder Bed Fusion: A Review
,”
Prog. Addit. Manuf.
,
4
(
4
), pp.
383
397
.
19.
Sendino
,
S.
,
Martinez
,
S.
,
Lartategui
,
F.
,
Gardon
,
M.
,
Lamikiz
,
A.
, and
Gonzalez
,
J. J.
,
2023
, “
Effect of Powder Particle Size Distribution on the Surface Finish of Components Manufactured by Laser Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
124
(
3–4
), pp.
789
799
.
20.
Simchi
,
A.
,
2004
, “
The Role of Particle Size on the Laser Sintering of Iron Powder
,”
Metall. Mater. Trans. B
,
35
(
5
), pp.
937
948
.
21.
Bonesso
,
M.
,
Rebesan
,
P.
,
Gennari
,
C.
,
Mancin
,
S.
,
Dima
,
R.
,
Pepato
,
A.
, and
Calliari
,
I.
,
2021
, “
Effect of Particle Size Distribution on Laser Powder Bed Fusion Manufacturability of Copper
,”
BHM Berg- und Hüttenmännische Monatshefte
,
166
(
5
), pp.
256
262
.
22.
Englert
,
L.
,
Schulze
,
V.
, and
Dietrich
,
S.
,
2022
, “
Concentric Scanning Strategies for Laser Powder Bed Fusion: Porosity Distribution in Practical Geometries
,”
Materials
,
15
(
3
), p.
1105
.
23.
Ranjan
,
R.
,
Ayas
,
C.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2020
, “
Fast Detection of Heat Accumulation in Powder Bed Fusion Using Computationally Efficient Thermal Models
,”
Materials
,
13
(
20
), pp.
1
25
.
24.
Schmitt
,
M.
,
Gerstl
,
F.
,
Boesele
,
M.
,
Horn
,
M.
,
Schlick
,
G.
,
Schilp
,
J.
, and
Reinhart
,
G.
,
2021
, “
Influence of Part Geometry and Feature Size on the Resulting Microstructure and Mechanical Properties of the Case Hardening Steel 16MnCr5 Processed by Laser Powder Bed Fusion
,”
Procedia CIRP
,
104
, pp.
726
731
.
25.
Singh
,
J.
,
Oliveira
,
J. P.
,
Taylor
,
H.
,
Mireles
,
J.
, and
Wicker
,
R.
,
2024
, “
A Holistic Approach for Evaluation of Gaussian Versus Ring Beam Processing on Structure and Properties in Laser Powder Bed Fusion
,”
J. Mater. Process. Technol.
,
325
, p.
118293
.
26.
Balbaa
,
M. A.
,
Ghasemi
,
A.
,
Fereiduni
,
E.
,
Elbestawi
,
M. A.
,
Jadhav
,
S. D.
, and
Kruth
,
J. P.
,
2021
, “
Role of Powder Particle Size on Laser Powder Bed Fusion Processability of AlSi10 mg Alloy
,”
Addit. Manuf.
,
37
, p.
101630
.
27.
Tan
,
Q.
,
Liu
,
Y.
,
Fan
,
Z.
,
Zhang
,
J.
,
Yin
,
Y.
, and
Zhang
,
M. X.
,
2020
, “
Effect of Processing Parameters on the Densification of an Additively Manufactured 2024 Al Alloy
,”
J. Mater. Sci. Technol.
,
58
(
2
), pp.
34
45
.
28.
Yao
,
S.
,
Wang
,
J.
,
Li
,
M.
,
Chen
,
Z.
,
Lu
,
B.
,
Shen
,
S.
, and
Li
,
Y.
,
2023
, “
LPBF-Formed 2024Al Alloys: Process, Microstructure, Properties, and Thermal Cracking Behavior
,”
Metals (Basel)
,
13
(
2
), p.
268
.
29.
Stopyra
,
W.
,
Gruber
,
K.
,
Smolina
,
I.
,
Kurzynowski
,
T.
, and
Kuźnicka
,
B.
,
2020
, “
Laser Powder Bed Fusion of AA7075 Alloy: Influence of Process Parameters on Porosity and Hot Cracking
,”
Addit. Manuf.
,
35
, p.
101270
.
30.
Kaufmann
,
N.
,
Imran
,
M.
,
Wischeropp
,
T. M.
,
Emmelmann
,
C.
,
Siddique
,
S.
, and
Walther
,
F.
,
2016
, “
Influence of Process Parameters on the Quality of Aluminium Alloy En AW 7075 Using Selective Laser Melting (SLM)
,”
Phys. Procedia
,
83
, pp.
918
926
. 0.1016/j.phpro.2016.08.096
31.
Belelli
,
F.
,
Casati
,
R.
,
Andrianopoli
,
C.
,
Cuccaro
,
F.
, and
Vedani
,
M.
,
2022
, “
Investigation and Characterization of an Al–Mg–Zr–Sc Alloy With Reduced Sc Content for Laser Powder Bed Fusion
,”
J. Alloys Compd.
,
924
(
9
), p.
166519
.
32.
Martucci
,
A.
,
Aversa
,
A.
,
Manfredi
,
D.
,
Bondioli
,
F.
,
Biamino
,
S.
,
Ugues
,
D.
,
Lombardi
,
M.
, and
Fino
,
P.
,
2022
, “
Low-Power Laser Powder Bed Fusion Processing of Scalmalloy®
,”
Materials
,
15
(
9
), p.
3123
.
33.
Li
,
D.
,
Wu
,
Y.
,
Geng
,
Z.
,
Zhang
,
J.
,
Chen
,
C.
,
Liu
,
X.
,
Liu
,
Y.
, and
Zhou
,
K.
,
2023
, “
High Strength Al−Mg−Sc−Zr Alloy With Heterogeneous Grain Structure and Intragranular Precipitation Produced by Laser Powder Bed Fusion
,”
J. Alloys Compd.
,
939
, p.
168722
.
34.
Uddin
,
S. Z.
,
Murr
,
L. E.
,
Terrazas
,
C. A.
,
Morton
,
P.
,
Roberson
,
D. A.
, and
Wicker
,
R. B.
,
2018
, “
Processing and Characterization of Crack-Free Aluminum 6061 Using High-Temperature Heating in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
405
415
.
35.
Yu
,
W.
,
Xiao
,
Z.
,
Zhang
,
X.
,
Sun
,
Y.
,
Xue
,
P.
,
Tan
,
S.
,
Wu
,
Y.
, and
Zheng
,
H.
,
2022
, “
Processing and Characterization of Crack-Free 7075 Aluminum Alloys With Elemental Zr Modification by Laser Powder Bed Fusion
,”
Mater. Sci. Addit. Manuf.
,
1
(
1
), p.
4
.
36.
Yang
,
F.
,
Wang
,
J.
,
Wen
,
T.
,
Zhang
,
L.
,
Dong
,
X.
,
Qiu
,
D.
,
Yang
,
H.
, and
Ji
,
S.
,
2022
, “
Developing a Novel High-Strength Al–Mg–Zn–Si Alloy for Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
851
, p.
143636
.
37.
Li
,
R.
,
Wang
,
M.
,
Li
,
Z.
,
Cao
,
P.
,
Yuan
,
T.
, and
Zhu
,
H.
,
2020
, “
Developing a High-Strength Al–Mg–Si–Sc–Zr Alloy for Selective Laser Melting: Crack-Inhibiting and Multiple Strengthening Mechanisms
,”
Acta Mater.
,
193
, pp.
83
98
.
38.
Otani
,
Y.
, and
Sasaki
,
S.
,
2020
, “
Effects of the Addition of Silicon to 7075 Aluminum Alloy on Microstructure, Mechanical Properties, and Selective Laser Melting Processability
,”
Mater. Sci. Eng.: A
,
777
, p.
139079
.
You do not currently have access to this content.