Abstract

Extrusion-based sintering-assisted additive manufacturing (ES-AM) enables the fabrication of intricate metal structures, spanning from simple geometries to complex lattice structures. Sintering plays a vital role in metal densification that requires effective design and optimization of sintering processes for high-quality sintered parts. Notably, sintering behaviors in ES-AM differ from those in traditional methods, primarily due to the heterogeneous distribution of particles and pores induced by the anisotropic fabrication nature of additive manufacturing (AM). This review offers an overview of sintering processes and mechanisms fundamental to ES-AM. Theories governing solid-state sintering and liquid-phase sintering are summarized to advance a thorough comprehension of the associated sintering mechanisms. Computational studies on sintering processes at different length scales are also discussed, including atomic-level molecular dynamics, microlevel simulations (Monte Carlo, phase field, and discrete element method), and macroscopic continuum models. The distinctive anisotropic sintering behaviors in the ES-AM process are further elucidated across multiple levels. Ultimately, future directions for ES-AM, encompassing materials, sintering process, and sintering mechanisms, are outlined to guide research endeavors in this field. This review summarizes multiscale sintering behaviors in both traditional manufacturing and AM, contributing to a deeper understanding of sintering mechanisms and paving the way for innovations in the next generation of manufacturing.

References

1.
Zadpoor
,
A. A.
,
2018
, “
Frontiers of Additively Manufactured Metallic Materials
,”
Materials
,
11
(
9
), p.
1566
.
2.
Toyserkani
,
E.
,
Sarker
,
D.
,
Ibhadode
,
O. O.
,
Liravi
,
F.
,
Russo
,
P.
, and
Taherkhani
,
K.
,
2021
,
Metal Additive Manufacturing
,
John Wiley & Sons
,
Hoboken, NJ
.
3.
Armstrong
,
M.
,
Mehrabi
,
H.
, and
Naveed
,
N.
,
2022
, “
An Overview of Modern Metal Additive Manufacturing Technology
,”
J. Manuf. Processes
,
84
, pp.
1001
1029
.
4.
Murugan
,
P. D.
,
Vijayananth
,
S.
,
Natarajan
,
M. P.
,
Jayabalakrishnan
,
D.
,
Arul
,
K.
,
Jayaseelan
,
V.
, and
Elanchezhian
,
J.
,
2022
, “
A Current State of Metal Additive Manufacturing Methods: A Review
,”
Mater. Today: Proc.
,
59
(
2
), pp.
1277
1283
.
5.
Ramazani
,
H.
, and
Kami
,
A.
,
2022
, “
Metal FDM, a New Extrusion-Based Additive Manufacturing Technology for Manufacturing of Metallic Parts: A Review
,”
Prog. Addit. Manuf.
,
7
(
4
), pp.
609
626
.
6.
Paul
,
I. D.
,
Bhole
,
G. P.
, and
Chaudhari
,
J. R.
,
2014
, “
A Review on Green Manufacturing: It's Important, Methodology and Its Application
,”
3rd International Conference on Materials Processing and Characterisation ICMPC 2014
,
Hyderabad, India
,
Mar. 8–9
, Vol. 6, pp.
1644
1649
.
7.
Singh
,
G.
,
Missiaen
,
J.-M.
,
Bouvard
,
D.
, and
Chaix
,
J.-M.
,
2021
, “
Additive Manufacturing of 17-4 PH Steel Using Metal Injection Molding Feedstock: Analysis of 3D Extrusion Printing, Debinding and Sintering
,”
Addit. Manuf.
,
47
, p.
102287
.
8.
Riaz
,
A.
,
Töllner
,
P.
,
Ahrend
,
A.
,
Springer
,
A.
,
Milkereit
,
B.
, and
Seitz
,
H.
,
2022
, “
Optimization of Composite Extrusion Modeling Process Parameters for 3D Printing of Low-Alloy Steel AISI 8740 Using Metal Injection Moulding Feedstock
,”
Mater. Des.
,
219
, p.
110814
.
9.
Singh
,
G.
,
Missiaen
,
J.-M.
,
Bouvard
,
D.
, and
Chaix
,
J.-M.
,
2021
, “
Copper Extrusion 3D Printing Using Metal Injection Moulding Feedstock: Analysis of Process Parameters for Green Density and Surface Roughness Optimization
,”
Addit. Manuf.
,
38
, p.
101778
.
10.
Zhao
,
Z.
,
Liu
,
R.
,
Chen
,
J.
, and
Xiong
,
X.
,
2023
, “
Additive Manufacturing of Cemented Carbide Using Analogous Powder Injection Molding Feedstock
,”
Int. J. Refract. Met. Hard Mater.
,
111
, p.
106095
.
11.
Kolli
,
S.
,
Beretta
,
M.
,
Selema
,
A.
,
Sergeant
,
P.
,
Kestens
,
L. A. I.
,
Rombouts
,
M.
, and
Vleugels
,
J.
,
2023
, “
Process Optimization and Characterization of Dense Pure Copper Parts Produced by Paste-Based 3D Micro-Extrusion
,”
Addit. Manuf.
,
73
, p.
103670
.
12.
Banerjee
,
S.
, and
Joens
,
C. J.
,
2019
, “7—Debinding and Sintering of Metal Injection Molding (MIM) Components,”
Handbook of Metal Injection Molding
, 2nd ed.,
D. F.
Heaney
, ed.,
Woodhead Publishing
,
Sawston, Cambridge, UK
, pp.
129
171
.
13.
Thawon
,
I.
,
Fongsamootr
,
T.
,
Mona
,
Y.
, and
Suttakul
,
P.
,
2022
, “
Investigation of the Mechanical Properties of Additively Manufactured Metal Parts with Different Relative Densities
,”
Appl. Sci.
,
12
(
19
), p.
9915
.
14.
Waalkes
,
L.
,
Längerich
,
J.
,
Holbe
,
F.
, and
Emmelmann
,
C.
,
2020
, “
Feasibility Study on Piston-Based Feedstock Fabrication with Ti-6Al-4V Metal Injection Molding Feedstock
,”
Addit. Manuf.
,
35
, p.
101207
.
15.
Elsayed
,
H.
,
Rebesan
,
P.
,
Giacomello
,
G.
,
Pasetto
,
M.
,
Gardin
,
C.
,
Ferroni
,
L.
,
Zavan
,
B.
, and
Biasetto
,
L.
,
2019
, “
Direct Ink Writing of Porous Titanium (Ti6Al4V) Lattice Structures
,”
Mater. Sci. Eng. C
,
103
, p.
109794
.
16.
Kenel
,
C.
,
Sesseg
,
J. P.
,
Geisendorfer
,
N. R.
,
Shah
,
R. N.
,
Spolenak
,
R.
, and
Dunand
,
D. C.
,
2020
, “
3D-Printed Tungsten Sheet-Gyroids via Reduction and Sintering of Extruded WO3-Nanopowder Inks
,”
Addit. Manuf.
,
36
, p.
101613
.
17.
Zhang
,
X.
,
Guo
,
Z.
,
Chen
,
C.
, and
Yang
,
W.
,
2018
, “
Additive Manufacturing of WC-20Co Components by 3D Gel-Printing
,”
Int. J. Refract. Met. Hard Mater.
,
70
, pp.
215
223
.
18.
Gonzalez-Gutierez
,
J.
,
Godec
,
D.
,
Guráň
,
R.
,
Spoerk
,
M.
,
Kukla
,
C.
, and
Holzer
,
C.
,
2018
, “
3D Printing Conditions Determination for Feedstock Used in Fused Filament Fabrication (FFF) of 17-4PH Stainless Steel Parts
,”
Metalurgija
,
57
(
1–2
), pp.
117
120
.
19.
Mousapour
,
M.
,
Salmi
,
M.
,
Klemettinen
,
L.
, and
Partanen
,
J.
,
2021
, “
Feasibility Study of Producing Multi-Metal Parts by Fused Filament Fabrication (FFF) Technique
,”
J. Manuf. Processes
,
67
, pp.
438
446
.
20.
Damon
,
J.
,
Dietrich
,
S.
,
Gorantla
,
S.
,
Popp
,
U.
,
Okolo
,
B.
, and
Schulze
,
V.
,
2019
, “
Process Porosity and Mechanical Performance of Fused Filament Fabricated 316L Stainless Steel
,”
Rapid Prototyp. J.
,
25
(
7
), pp.
1319
1327
.
21.
Rane
,
K.
,
Di Landro
,
L.
, and
Strano
,
M.
,
2019
, “
Processability of SS316L Powder—Binder Mixtures for Vertical Extrusion and Deposition on Table Tests
,”
Powder Technol.
,
345
, pp.
553
562
.
22.
Kan
,
X.
,
Yang
,
D.
,
Zhao
,
Z.
, and
Sun
,
J.
,
2021
, “
316L FFF Binder Development and Debinding Optimization
,”
Mater. Res. Express
,
8
(
11
), p.
116515
.
23.
Ren
,
L.
,
Zhou
,
X.
,
Song
,
Z.
,
Zhao
,
C.
,
Liu
,
Q.
,
Xue
,
J.
, and
Li
,
X.
,
2017
, “
Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System
,”
Materials
,
10
(
3
), p.
305
.
24.
Wagner
,
M. A.
,
Hadian
,
A.
,
Sebastian
,
T.
,
Clemens
,
F.
,
Schweizer
,
T.
,
Rodriguez-Arbaizar
,
M.
,
Carreno-Morelli
,
E.
, and
Spolenak
,
R.
,
2022
, “
Fused Filament Fabrication of Stainless Steel Structures-From Binder Development to Sintered Properties
,”
Addit. Manuf.
,
49
, p.
102472
.
25.
Suwanpreecha
,
C.
,
Seensattayawong
,
P.
,
Vadhanakovint
,
V.
, and
Manonukul
,
A.
,
2021
, “
Influence of Specimen Layout on 17-4PH (AISI 630) Alloys Fabricated by Low-Cost Additive Manufacturing
,”
Metall. Mater. Trans. A
,
52
(
5
), pp.
1999
2009
.
26.
Caminero
,
,
Romero Gutiérrez
,
A.
,
Chacón
,
J. M.
,
García-Plaza
,
E.
, and
Núñez
,
P. J.
,
2022
, “
Effects of Fused Filament Fabrication Parameters on the Manufacturing of 316L Stainless-Steel Components: Geometric and Mechanical Properties
,”
Rapid Prototyp. J.
,
28
(
10
), pp.
2004
2026
.
27.
Suwanpreecha
,
C.
, and
Manonukul
,
A.
,
2022
, “
On the Build Orientation Effect in as-Printed and as-Sintered Bending Properties of 17-4PH Alloy Fabricated by Metal Fused Filament Fabrication
,”
Rapid Prototyp. J.
,
28
(
6
), pp.
1076
1085
.
28.
Pellegrini
,
A.
,
Palmieri
,
M. E.
, and
Guerra
,
M. G.
,
2022
, “
Evaluation of Anisotropic Mechanical Behaviour of 316L Parts Realized by Metal Fused Filament Fabrication Using Digital Image Correlation
,”
Int. J. Adv. Manuf. Technol.
,
120
(
11–12
), pp.
7951
7965
.
29.
Alkindi
,
T.
,
Alyammahi
,
M.
,
Susantyoko
,
R. A.
, and
Atatreh
,
S.
,
2021
, “
The Effect of Varying Specimens’ Printing Angles to the Bed Surface on the Tensile Strength of 3D-Printed 17-4PH Stainless-Steels via Metal FFF Additive Manufacturing
,”
MRS Commun.
,
11
(
3
), pp.
310
316
.
30.
Atatreh
,
S.
,
Alyammahi
,
M. S.
,
Vasilyan
,
H.
,
Alkindi
,
T.
, and
Susantyoko
,
R. A.
,
2023
, “
Evaluation of the Infill Design on the Tensile Properties of Metal Parts Produced by Fused Filament Fabrication
,”
Results Eng.
,
17
, p.
100954
.
31.
Kılınç
,
A. Ç.
,
Goktas
,
A. A.
,
Keskin
,
Ö. Y.
, and
Köktaş
,
S.
,
2021
, “
Extrusion-Based 3D Printing of CuSn10 Bronze Parts: Production and Characterization
,”
Metals
,
11
(
11
), p.
1774
.
32.
Kasha
,
A.
,
Obadimu
,
S. O.
, and
Kourousis
,
K. I.
,
2022
, “
Flexural Characteristics of Material Extrusion Steel 316L: Influence of Manufacturing Parameters
,”
Addit. Manuf. Lett.
,
3
, p.
100087
.
33.
Thompson
,
Y.
,
Gonzalez-Gutierrez
,
J.
,
Kukla
,
C.
, and
Felfer
,
P.
,
2019
, “
Fused Filament Fabrication, Debinding and Sintering as a Low Cost Additive Manufacturing Method of 316L Stainless Steel
,”
Addit. Manuf.
,
30
, p.
100861
.
34.
Lavecchia
,
F.
,
Pellegrini
,
A.
, and
Galantucci
,
L. M.
,
2023
, “
Comparative Study on the Properties of 17-4 PH Stainless Steel Parts Made by Metal Fused Filament Fabrication Process and Atomic Diffusion Additive Manufacturing
,”
Rapid Prototyp. J.
,
29
(
2
), pp.
393
407
.
35.
Godec
,
D.
,
Cano
,
S.
,
Holzer
,
C.
, and
Gonzalez-Gutierrez
,
J.
,
2020
, “
Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel
,”
Materials
,
13
(
3
), p.
774
.
36.
Thompson
,
Y.
,
Zissel
,
K.
,
Förner
,
A.
,
Gonzalez-Gutierrez
,
J.
,
Kukla
,
C.
,
Neumeier
,
S.
, and
Felfer
,
P.
,
2022
, “
Metal Fused Filament Fabrication of the Nickel-Base Superalloy IN 718
,”
J. Mater. Sci.
,
57
(
21
), pp.
9541
9555
.
37.
Lotfizarei
,
Z.
,
Mostafapour
,
A.
,
Barari
,
A.
,
Jalili
,
A.
, and
Patterson
,
A. E.
,
2022
, “
Overview of Debinding Methods for Parts Manufactured Using Powder Material Extrusion
,”
Addit. Manuf.
,
61
, p.
103335
.
38.
Naranjo
,
J. A.
,
Berges
,
C.
,
Gallego
,
A.
, and
Herranz
,
G.
,
2021
, “
A Novel Printable High-Speed Steel Filament: Towards the Solution for Wear-Resistant Customized Tools by AM Alternative
,”
J. Mater. Res. Technol.
,
11
, pp.
1534
1547
.
39.
Zhang
,
Y.
,
Bai
,
S.
,
Riede
,
M.
,
Garratt
,
E.
, and
Roch
,
A.
,
2020
, “
A Comprehensive Study on Fused Filament Fabrication of Ti-6Al-4V Structures
,”
Addit. Manuf.
,
34
, p.
101256
.
40.
Chemkhi
,
M.
,
Djouda
,
J. M.
,
Bouaziz
,
M.
,
Kauffmann
,
J.
,
Hild
,
F.
, and
Retraint
,
D.
,
2021
, “
Effects of Mechanical Post-Treatments on Additive Manufactured 17-4PH Stainless Steel Produced by Bound Powder Extrusion
,”
Procedia CIRP
,
104
, pp.
957
961
.
41.
Hu
,
Z.
,
Liu
,
Y.
,
Qian
,
Z.
,
Zhao
,
Y.
,
Dong
,
J.
,
Yang
,
Z.
,
Wang
,
Z.
, and
Ma
,
Z.
,
2021
, “
The Preparation of High-Performance 96W-2.7 Ni-1.3 Fe Alloy Parts by Powder Extrusion 3D Printing
,”
Mater. Sci. Eng. A
,
817
, p.
141417
.
42.
Wang
,
Y.
,
Zhang
,
L.
,
Li
,
X.
, and
Yan
,
Z.
,
2021
, “
On Hot Isostatic Pressing Sintering of Fused Filament Fabricated 316L Stainless Steel—Evaluation of Microstructure, Porosity, and Tensile Properties
,”
Mater. Lett.
,
296
, p.
129854
.
43.
Suwanpreecha
,
C.
, and
Manonukul
,
A.
,
2022
, “
A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding
,”
Metals
,
12
(
3
), p.
429
.
44.
Nurhudan
,
A. I.
,
Supriadi
,
S.
,
Whulanza
,
Y.
, and
Saragih
,
A. S.
,
2021
, “
Additive Manufacturing of Metallic Based on Extrusion Process: A Review
,”
J. Manuf. Processes
,
66
, pp.
228
237
.
45.
Gonzalez-Gutierrez
,
J.
,
Cano
,
S.
,
Schuschnigg
,
S.
,
Kukla
,
C.
,
Sapkota
,
J.
, and
Holzer
,
C.
,
2018
, “
Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives
,”
Materials
,
11
(
5
), p.
840
.
46.
Bankapalli
,
N. K.
,
Gupta
,
V.
,
Saxena
,
P.
,
Bajpai
,
A.
,
Lahoda
,
C.
, and
Polte
,
J.
,
2023
, “
Filament Fabrication and Subsequent Additive Manufacturing, Debinding, and Sintering for Extrusion-Based Metal Additive Manufacturing and Their Applications: A Review
,”
Compos. Part B Eng.
,
264
, p.
110915
.
47.
Wang
,
F.
,
You
,
S.
,
Jiang
,
D.
, and
Ning
,
F.
,
2022
, “
Study on Sintering Mechanism for Extrusion-Based Additive Manufacturing of Stainless Steel Through Molecular Dynamics Simulation
,”
Addit. Manuf.
,
58
, p.
102991
.
48.
Caminero
,
M. Á.
,
Romero
,
A.
,
Chacón
,
J. M.
,
Núñez
,
P. J.
,
García-Plaza
,
E.
, and
Rodríguez
,
G. P.
,
2021
, “
Additive Manufacturing of 316L Stainless-Steel Structures Using Fused Filament Fabrication Technology: Mechanical and Geometric Properties
,”
Rapid Prototyp. J.
,
27
(
3
), pp.
583
591
.
49.
Jiang
,
D.
, and
Ning
,
F.
,
2022
, “
Anisotropic Deformation of 316L Stainless Steel Overhang Structures Built by Material Extrusion Based Additive Manufacturing
,”
Addit. Manuf.
,
50
, p.
102545
.
50.
Bose
,
A.
,
Schuh
,
C. A.
,
Tobia
,
J. C.
,
Tuncer
,
N.
,
Mykulowycz
,
N. M.
,
Preston
,
A.
,
Barbati
,
A. C.
,
Kernan
,
B.
,
Gibson
,
M. A.
, and
Krause
,
D.
,
2018
, “
Traditional and Additive Manufacturing of a New Tungsten Heavy Alloy Alternative
,”
Int. J. Refract. Met. Hard Mater.
,
73
, pp.
22
28
.
51.
Bose
,
A.
,
Reidy
,
J. P.
,
Tuncer
,
N.
, and
Jorgensen
,
L.
,
2023
, “
Processing of Tungsten Heavy Alloy by Extrusion-Based Additive Manufacturing
,”
Int. J. Refract. Met. Hard Mater.
,
110
, p.
106021
.
52.
Yang
,
Y.
,
Zhang
,
C.
,
Wang
,
D.
,
Nie
,
L.
,
Wellmann
,
D.
, and
Tian
,
Y.
,
2020
, “
Additive Manufacturing of WC-Co Hardmetals: A Review
,”
Int. J. Adv. Manuf. Technol.
,
108
(
5–6
), pp.
1653
1673
.
53.
Gong
,
H.
,
Snelling
,
D.
,
Kardel
,
K.
, and
Carrano
,
A.
,
2021
, “
Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes
,”
JOM
,
71
(
3
), pp.
880
885
.
54.
Xie
,
H.
,
Jiang
,
J.
,
Yang
,
X.
,
He
,
Q.
,
Zhou
,
Z.
,
Xu
,
X.
, and
Zhang
,
L.
,
2020
, “
Theory and Practice of Rapid and Safe Thermal Debinding in Ceramic Injection Molding
,”
Int. J. Appl. Ceram. Technol.
,
17
(
3
), pp.
1098
1107
.
55.
Tosto
,
C.-T.
,
Jacopo
,
T.
,
Sarasini
,
F.
,
Sergi
,
C.
, and
Cicala
,
G.
,
2022
, “
Fused Deposition Modeling Parameter Optimization for Cost-Effective Metal Part Printing
,”
Polymers
,
14
(
16
), p.
3264
.
56.
Liu
,
B.
,
Wang
,
Y.
,
Lin
,
Z.
, and
Zhang
,
T.
,
2020
, “
Creating Metal Parts by Fused Deposition Modeling and Sintering
,”
Mater. Lett.
,
263
, p.
127252
.
57.
Kurose
,
T.
,
Abe
,
Y.
,
Santos
,
M. V. A.
,
Kanaya
,
Y.
,
Ishigami
,
A.
,
Tanaka
,
S.
, and
Ito
,
H.
,
2020
, “
Influence of the Layer Directions on the Properties of 316L Stainless Steel Parts Fabricated Through Fused Deposition of Metals
,”
Materials
,
13
(
11
), p.
2493
.
58.
Sadaf
,
M.
,
Bragaglia
,
M.
, and
Nanni
,
F.
,
2021
, “
A Simple Route for Additive Manufacturing of 316L Stainless Steel via Fused Filament Fabrication
,”
J. Manuf. Processes
,
67
, pp.
141
150
.
59.
Hassan
,
W.
,
Farid
,
M. A.
,
Tosi
,
A.
,
Rane
,
K.
, and
Strano
,
M.
,
2021
, “
The Effect of Printing Parameters on Sintered Properties of Extrusion-Based Additively Manufactured Stainless Steel 316L Parts
,”
Int. J. Adv. Manuf. Technol.
,
114
(
9–10
), pp.
3057
3067
.
60.
Tosto
,
C.
,
Tirillò
,
J.
,
Sarasini
,
F.
, and
Cicala
,
G.
,
2021
, “
Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts
,”
Appl. Sci.
,
11
(
4
), p.
1444
.
61.
Jiang
,
D.
, and
Ning
,
F.
,
2021
, “
Additive Manufacturing of 316L Stainless Steel by a Printing-Debinding-Sintering Method: Effects of Microstructure on Fatigue Property
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091007
.
62.
Cerejo
,
F.
,
Gatões
,
D.
, and
Vieira
,
M.
,
2021
, “
Optimization of Metallic Powder Filaments for Additive Manufacturing Extrusion (MEX)
,”
Int. J. Adv. Manuf. Technol.
,
115
(
7–8
), pp.
2449
2464
.
63.
Carminati
,
M.
,
Quarto
,
M.
,
D’Urso
,
G.
,
Giardini
,
C.
, and
Borriello
,
C.
,
2022
, “
A Comprehensive Analysis of AISI 316L Samples Printed via FDM: Structural and Mechanical Characterization
,”
Key Eng. Mater.
,
926
, pp.
46
55
.
64.
Quarto
,
M.
,
Carminati
,
M.
, and
D’Urso
,
G.
,
2021
, “
Density and Shrinkage Evaluation of AISI 316L Parts Printed via FDM Process
,”
Mater. Manuf. Process.
,
36
(
13
), pp.
1535
1543
.
65.
Rosnitschek
,
T.
,
Seefeldt
,
A.
,
Alber-Laukant
,
B.
,
Neumeyer
,
T.
,
Altstädt
,
V.
, and
Tremmel
,
S.
,
2021
, “
Correlations of Geometry and Infill Degree of Extrusion Additively Manufactured 316L Stainless Steel Components
,”
Materials
,
14
(
18
), p.
5173
.
66.
Boschetto
,
A.
,
Bottini
,
L.
,
Miani
,
F.
, and
Veniali
,
F.
,
2022
, “
Roughness Investigation of Steel 316L Parts Fabricated by Metal Fused Filament Fabrication
,”
J. Manuf. Processes
,
81
, pp.
261
280
.
67.
Chacón
,
J.
,
Núñez
,
P.
,
Caminero
,
M.
,
García-Plaza
,
E.
,
Vallejo
,
J.
, and
Blanco
,
M.
,
2022
, “
3D Printing of Patient-Specific 316L–Stainless–Steel Medical Implants Using Fused Filament Fabrication Technology: Two Veterinary Case Studies
,”
Bio-Des. Manuf.
,
5
(
4
), pp.
808
815
.
68.
Kumar
,
R.
,
Kumar
,
M.
,
Singh Chohan
,
J.
, and
Kumar
,
S.
,
2022
, “
Effect of Process Parameters on Surface Roughness of 316L Stainless Steel Coated 3D Printed PLA Parts
,”
Materials Today: Proceedings
,
68
(
4
), pp.
734
741
.
69.
Wagner
,
M. A.
,
Engel
,
J.
,
Hadian
,
A.
,
Clemens
,
F.
,
Rodriguez-Arbaizar
,
M.
,
Carreño-Morelli
,
E.
,
Wheeler
,
J. M.
, and
Spolenak
,
R.
,
2022
, “
Filament Extrusion-Based Additive Manufacturing of 316L Stainless Steel: Effects of Sintering Conditions on the Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
59
, p.
103147
.
70.
Kedziora
,
S.
,
Decker
,
T.
,
Museyibov
,
E.
,
Morbach
,
J.
,
Hohmann
,
S.
,
Huwer
,
A.
, and
Wahl
,
M.
,
2022
, “
Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing
,”
Materials
,
15
(
18
), p.
6278
.
71.
Obadimu
,
S. O.
,
Kasha
,
A.
, and
Kourousis
,
K. I.
,
2022
, “
Tensile Performance and Plastic Anisotropy of Material Extrusion Steel 316L: Influence of Primary Manufacturing Parameters
,”
Addit. Manuf.
,
60
, p.
103297
.
72.
Carminati
,
M.
,
Quarto
,
M.
,
D’Urso
,
G.
,
Giardini
,
C.
, and
Maccarini
,
G.
,
2022
, “
Mechanical Characterization of AISI 316L Samples Printed Using Material Extrusion
,”
Appl. Sci.
,
12
(
3
), p.
1433
.
73.
Spiller
,
S.
,
Kolstad
,
S. O.
, and
Razavi
,
N.
,
2022
, “
Fabrication and Characterization of 316L Stainless Steel Components Printed with Material Extrusion Additive Manufacturing
,”
23rd European Conference on Fracture
,
Funchal, Madeira, Portugal
,
June 27–July 1
, Vol. 42, pp.
1239
1248
.
74.
Choi
,
B.-Y.
,
Park
,
S.-J.
,
Son
,
Y.
,
Han
,
S.-J.
,
Kim
,
H.-G.
,
Ahn
,
I.-H.
, and
Choi
,
W.-C.
,
2022
, “
Influence of Warm Isostatic Press Process on Mechanical Properties of a Part Fabricated by Metal Material Extrusion Process
,”
Appl. Sci.
,
12
(
23
), p.
12240
.
75.
Santamaria
,
R.
,
Salasi
,
M.
,
Bakhtiari
,
S.
,
Leadbeater
,
G.
,
Iannuzzi
,
M.
, and
Quadir
,
M. Z.
,
2022
, “
Microstructure and Mechanical Behaviour of 316L Stainless Steel Produced Using Sinter-Based Extrusion Additive Manufacturing
,”
J. Mater. Sci.
,
57
, pp.
9646
9662
.
76.
Ortega Varela de Seijas
,
M.
,
Bardenhagen
,
A.
,
Rohr
,
T.
, and
Stoll
,
E.
,
2023
, “
Indirect Induction Sintering of Metal Parts Produced Through Material Extrusion Additive Manufacturing
,”
Materials
,
16
(
2
), p.
885
.
77.
Gabilondo
,
M.
,
Cearsolo
,
X.
,
Arrue
,
M.
, and
Castro
,
F.
,
2022
, “
Influence of Build Orientation, Chamber Temperature and Infill Pattern on Mechanical Properties of 316L Parts Manufactured by Bound Metal Deposition
,”
Materials
,
15
(
3
), p.
1183
.
78.
You
,
S.
,
Jiang
,
D.
,
Wang
,
F.
, and
Ning
,
F.
,
2023
, “
Anisotropic Sintering Shrinkage Behavior of Stainless Steel Fabricated by Extrusion-Based Metal Additive Manufacturing
,”
J. Manuf. Processes
,
101
, pp.
1508
1520
.
79.
Sargini
,
M.
,
Masood
,
S.
,
Palanisamy
,
S.
,
Jayamani
,
E.
, and
Kapoor
,
A.
,
2021
, “
Additive Manufacturing of an Automotive Brake Pedal by Metal Fused Deposition Modelling
,”
Mater. Today: Proc.
,
45
, pp.
4601
4605
.
80.
Bjørheim
,
F.
, and
Lopez
,
I. L. T.
,
2021
,
Tension Testing of Additively Manufactured Specimens of 17-4 PH Processed by Bound Metal Deposition
,
IOP Publishing
,
Bristol, UK
, p.
012037
.
81.
Parenti
,
P.
,
Puccio
,
D.
,
Colosimo
,
B. M.
, and
Semeraro
,
Q.
,
2022
, “
A New Solution for Assessing the Printability of 17-4 PH Gyroids Produced via Extrusion-Based Metal AM
,”
J. Manuf. Processes
,
74
, pp.
557
572
.
82.
Watson
,
A.
,
Belding
,
J.
, and
Ellis
,
B. D.
,
2020
,
Characterization of 17-4 PH Processed via Bound Metal Deposition (BMD)
,
Springer
,
New York
, pp.
205
216
.
83.
Li
,
S.
,
Deng
,
H.
,
Lan
,
X.
,
He
,
B.
,
Li
,
X.
, and
Wang
,
Z.
,
2023
, “
Developing Cost-Effective Indirect Manufacturing of H13 Steel From Extrusion-Printing to Post-Processing
,”
Addit. Manuf.
,
62
, p.
103384
.
84.
Gil-Plazas
,
A.-F.
,
Rubiano-Buitrago
,
J.-D.
,
Boyacá-Mendivelso
,
L.-A.
, and
Herrera-Quintero
,
L.-K.
,
2022
, “
Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication
,”
Rev. Fac. Ing.
,
31
(
60
), p.
e13913
.
85.
Thompson
,
Y.
,
Polzer
,
M.
,
Gonzalez-Gutierrez
,
J.
,
Kasian
,
O.
,
Heckl
,
J. P.
,
Dalbauer
,
V.
,
Kukla
,
C.
, and
Felfer
,
P. J.
,
2021
, “
Fused Filament Fabrication-Based Additive Manufacturing of Commercially Pure Titanium
,”
Adv. Eng. Mater.
,
23
(
12
), p.
2100380
.
86.
Shaikh
,
M. Q.
,
Graziosi
,
S.
, and
Atre
,
S. V.
,
2021
, “
Supportless Printing of Lattice Structures by Metal Fused Filament Fabrication (MF3) of Ti-6Al-4V: Design and Analysis
,”
Rapid Prototyp. J.
,
27
(
7
), pp.
1408
1422
.
87.
Coffigniez
,
M.
,
Gremillard
,
L.
,
Perez
,
M.
,
Simon
,
S.
,
Rigollet
,
C.
,
Bonjour
,
E.
,
Jame
,
P.
, and
Boulnat
,
X.
,
2021
, “
Modeling of Interstitials Diffusion During Debinding/Sintering of 3D Printed Metallic Filaments: Application to Titanium Alloy and Its Embrittlement
,”
Acta Mater.
,
219
, p.
117224
.
88.
Singh
,
P.
,
Shaikh
,
Q.
,
Balla
,
V. K.
,
Atre
,
S. V.
, and
Kate
,
K. H.
,
2020
, “
Estimating Powder-Polymer Material Properties Used in Design for Metal Fused Filament Fabrication (DfMF 3)
,”
JOM
,
72
(
1
), pp.
485
495
.
89.
Singh
,
P.
,
Balla
,
V. K.
,
Tofangchi
,
A.
,
Atre
,
S. V.
, and
Kate
,
K. H.
,
2020
, “
Printability Studies of Ti-6Al-4V by Metal Fused Filament Fabrication (MF3)
,”
Int. J. Refract. Met. Hard Mater.
,
91
, p.
105249
.
90.
Singh
,
P.
,
2020
,
Materials-Processing Relationships for Metal Fused Filament Fabrication of Ti-6Al-4V Alloy
,
University of Louisville
.
91.
Singh
,
P.
,
Balla
,
V. K.
,
Atre
,
S. V.
,
German
,
R. M.
, and
Kate
,
K. H.
,
2021
, “
Factors Affecting Properties of Ti-6Al-4V Alloy Additive Manufactured by Metal Fused Filament Fabrication
,”
Powder Technol.
,
386
, pp.
9
19
.
92.
Shaikh
,
M. Q.
,
2021
,
Design for Metal Fused Filament Fabrication (DfMF3) of Ti-6Al-4V Alloy
,
University of Louisville
,
Louisville, KY
.
93.
Shaikh
,
M. Q.
,
Singh
,
P.
,
Kate
,
K. H.
,
Freese
,
M.
, and
Atre
,
S. V.
,
2021
, “
Finite Element-Based Simulation of Metal Fused Filament Fabrication Process: Distortion Prediction and Experimental Verification
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
5135
5149
.
94.
Shaikh
,
M. Q.
,
Lavertu
,
P.-Y.
,
Kate
,
K. H.
, and
Atre
,
S. V.
,
2021
, “
Process Sensitivity and Significant Parameters Investigation in Metal Fused Filament Fabrication of Ti-6Al-4V
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
5118
5134
.
95.
Singh
,
P.
,
Balla
,
V. K.
,
Gokce
,
A.
,
Atre
,
S. V.
, and
Kate
,
K. H.
,
2021
, “
Additive Manufacturing of Ti-6Al-4V Alloy by Metal Fused Filament Fabrication (MF 3): Producing Parts Comparable to That of Metal Injection Molding
,”
Prog. Addit. Manuf.
,
6
(
4
), pp.
593
606
.
96.
Luchinsky
,
D. G.
,
Hafiychuk
,
V.
,
Wheeler
,
K. R.
, and
Prater
,
T. J.
,
2021
,
Analysis of Nonlinear Shrinkage for the Bound Metal Deposition Manufacturing Using Multi-Scale Approach
,
NASA Technical Reports Server (NTRS)
.
97.
Eickhoff
,
R.
,
Antusch
,
S.
,
Baumgärtner
,
S.
,
Nötzel
,
D.
, and
Hanemann
,
T.
,
2022
, “
Feedstock Development for Material Extrusion-Based Printing of Ti6Al4V Parts
,”
Materials
,
15
(
18
), p.
6442
.
98.
Grygier
,
D.
,
Kujawa
,
M.
, and
Kowalewski
,
P.
,
2022
, “
Deposition of Biocompatible Polymers by 3D Printing (FDM) on Titanium Alloy
,”
Polymers
,
14
(
2
), p.
235
.
99.
Hertle
,
S.
,
Kleffel
,
T.
,
Woerz
,
A.
, and
Drummer
,
D.
,
2020
, “
Production of Polymer-Metal Hybrids Using Extrusion-Based Additive Manufacturing and Electrochemically Treated Aluminum
,”
Addit. Manuf.
,
33
, p.
101135
.
100.
Malone
,
L. J.
,
2022
,
Additive Manufacturing of Aluminum Alloy by Metal Fused Filament Fabrication (MF3)
,
University of Louisville
,
Louisville, KY
.
101.
Singh
,
G.
,
Missiaen
,
J.-M.
,
Bouvard
,
D.
, and
Chaix
,
J.-M.
,
2021
, “
Copper Additive Manufacturing Using MIM Feedstock: Adjustment of Printing, Debinding, and Sintering Parameters for Processing Dense and Defectless Parts
,”
Int. J. Adv. Manuf. Technol.
,
115
(
1–2
), pp.
449
462
.
102.
Yan
,
X.
,
Hao
,
L.
,
Xiong
,
W.
, and
Tang
,
D.
,
2017
, “
Research on Influencing Factors and Its Optimization of Metal Powder Injection Molding Without Mold via an Innovative 3D Printing Method
,”
RSC Adv.
,
7
(
87
), pp.
55232
55239
.
103.
Santos
,
C.
,
Gatões
,
D.
,
Cerejo
,
F.
, and
Vieira
,
M. T.
,
2021
, “
Influence of Metallic Powder Characteristics on Extruded Feedstock Performance for Indirect Additive Manufacturing
,”
Materials
,
14
(
23
), p.
7136
.
104.
Wei
,
X.
,
Behm
,
I.
,
Winkler
,
T.
,
Scharf
,
S.
,
Li
,
X.
, and
Bähr
,
R.
,
2022
, “
Experimental Study on Metal Parts Under Variable 3D Printing and Sintering Orientations Using Bronze/PLA Hybrid Filament Coupled with Fused Filament Fabrication
,”
Materials
,
15
(
15
), p.
5333
.
105.
Ahmed
,
W.
,
Al-Marzouqi
,
A. H.
,
Nazir
,
M. H.
,
Rizvi
,
T. A.
,
Zaneldin
,
E.
, and
Khan
,
M.
,
2022
, “
Comparative Experimental Investigation of Biodegradable Antimicrobial Polymer-Based Composite Produced by 3D Printing Technology Enriched with Metallic Particles
,”
Int. J. Mol. Sci.
,
23
(
19
), p.
11235
.
106.
Cañadilla
,
A.
,
Romero
,
A.
,
Rodríguez
,
G. P.
,
Caminero
,
M. Á.
, and
Dura
,
Ó. J.
,
2022
, “
Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing
,”
Materials
,
15
(
13
), p.
4644
.
107.
Hong
,
S.
,
Sanchez
,
C.
,
Du
,
H.
, and
Kim
,
N.
,
2015
, “
Fabrication of 3D Printed Metal Structures by Use of High-Viscosity Cu Paste and a Screw Extruder
,”
J. Electron. Mater.
,
44
(
3
), pp.
836
841
.
108.
Carrozza
,
A.
,
Lorenzi
,
S.
,
Carugo
,
F.
,
Fest-Santini
,
S.
,
Santini
,
M.
,
Marchese
,
G.
,
Barbieri
,
G.
,
Cognini
,
F.
,
Cabrini
,
M.
, and
Pastore
,
T.
,
2023
, “
A Comparative Analysis Between Material Extrusion and Other Additive Manufacturing Techniques: Defects, Microstructure and Corrosion Behavior in Nickel Alloy 625
,”
Mater. Des.
,
225
, p.
111545
.
109.
Jagtap
,
B. M.
,
Kakandikar
,
G. M.
, and
Jawade
,
S. A.
,
2022
, “Mechanical Behavior of Inconel 625 and 17-4 PH Stainless Steel Processed by Atomic Diffusion Additive Manufacturing,”
Recent Advances in Manufacturing Processes and Systems
,
H. K.
Dave
,
U. S.
Dixit
, and
D.
Nedelcu
, eds.,
Springer Nature Singapore
,
Singapore
, pp.
583
594
.
110.
Lengauer
,
W.
,
Duretek
,
I.
,
Fürst
,
M.
,
Schwarz
,
V.
,
Gonzalez-Gutierrez
,
J.
,
Schuschnigg
,
S.
,
Kukla
,
C.
, et al
,
2019
, “
Fabrication and Properties of Extrusion-Based 3D-Printed Hardmetal and Cermet Components
,”
Int. J. Refract. Met. Hard Mater.
,
82
, pp.
141
149
.
111.
Abel
,
J.
,
Scheithauer
,
U.
,
Janics
,
T.
,
Hampel
,
S.
,
Cano
,
S.
,
Müller-Köhn
,
A.
,
Günther
,
A.
,
Kukla
,
C.
, and
Moritz
,
T.
,
2019
, “
Fused Filament Fabrication (FFF) of Metal-Ceramic Components
,”
J. Vis. Exp.
143
), p.
e57693
.
112.
Seleznev
,
M.
, and
Roy-Mayhew
,
J. D.
,
2021
, “
Bi-Metal Composite Material for Plastic Injection Molding Tooling Applications via Fused Filament Fabrication Process
,”
Addit. Manuf.
,
48
, p.
102375
.
113.
Jiang
,
D.
, and
Ning
,
F.
,
2023
, “
BI-Metal Structures Fabricated by Extrusion-Based Sintering-Assisted Additive Manufacturing
,”
J. Manuf. Processes
,
98
, pp.
216
222
.
114.
Gibson
,
M. A.
,
Mykulowycz
,
N. M.
,
Shim
,
J.
,
Fontana
,
R.
,
Schmitt
,
P.
,
Roberts
,
A.
,
Ketkaew
,
J.
,
Shao
,
L.
,
Chen
,
W.
, and
Bordeenithikasem
,
P.
,
2018
, “
3D Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses
,”
Mater. Today
,
21
(
7
), pp.
697
702
.
115.
Warrier
,
N.
, and
Kate
,
K. H.
,
2018
, “
Fused Filament Fabrication 3D Printing with Low-Melt Alloys
,”
Prog. Addit. Manuf.
,
3
(
1
), pp.
51
63
.
116.
Hasib
,
A. G.
,
Niauzorau
,
S.
,
Xu
,
W.
,
Niverty
,
S.
,
Kublik
,
N.
,
Williams
,
J.
,
Chawla
,
N.
,
Song
,
K.
, and
Azeredo
,
B.
,
2021
, “
Rheology Scaling of Spherical Metal Powders Dispersed in Thermoplastics and Its Correlation to the Extrudability of Filaments for 3D Printing
,”
Addit. Manuf.
,
41
, p.
101967
.
117.
Kong
,
X.
,
Su
,
Z.
,
He
,
T.
,
Wu
,
J.
,
Wu
,
D.
, and
Zhang
,
S.
,
2022
, “
Development and Properties Evaluation of Diamond-Containing Metal Composites for Fused Filament Fabrication of Diamond Tool
,”
Diam. Relat. Mater.
,
130
, p.
109423
.
118.
Yamanoglu
,
R.
,
2019
, “
Pressureless Spark Plasma Sintering: A Perspective From Conventional Sintering to Accelerated Sintering Without Pressure
,”
Powder Metall. Met. Ceram.
,
57
(
9–10
), pp.
513
525
.
119.
Vetter
,
J.
,
Huber
,
F.
,
Wachter
,
S.
,
Körner
,
C.
, and
Schmidt
,
M.
,
2022
, “
Development of a Material Extrusion Additive Manufacturing Process of 1.2083 Steel Comprising FFF Printing, Solvent and Thermal Debinding and Sintering
,”
Procedia CIRP
,
113
, pp.
341
346
.
120.
Blindheim
,
J.
,
Grong
,
Ø
,
Welo
,
T.
, and
Steinert
,
M.
,
2020
, “
On the Mechanical Integrity of AA6082 3D Structures Deposited by Hybrid Metal Extrusion & Bonding Additive Manufacturing
,”
J. Mater. Process. Technol.
,
282
, p.
116684
.
121.
Froes
,
F. H.
, and
Whittaker
,
M.
,
2022
,
Titanium and Its Alloys
,
Elsevier
,
New York
.
122.
Jiang
,
D.
, and
Ning
,
F.
,
2022
, “
Material Extrusion of Stainless-Steel Plate-Lattice Structure: Part Shrinkage, Microstructure, and Mechanical Performance
,”
50th SME North American Manufacturing Research Conference (NAMRC 502022)
,
Purdue University, West Lafayette, IN
,
June 27–July 1
, Vol. 33, pp.
712
718
.
123.
Fang
,
Z. Z.
,
2010
,
Sintering of Advanced Materials
,
Elsevier
,
New York
.
124.
Su
,
C.
,
Wang
,
J.
,
Li
,
H.
,
You
,
Z.
, and
Li
,
J.
,
2021
, “
Binder-Jetting Additive Manufacturing of Mg Alloy Densified by Two-Step Sintering Process
,”
J. Manuf. Processes
,
72
, pp.
71
79
.
125.
Que
,
Z.
,
Wei
,
Z.
,
Li
,
X.
,
Zhang
,
L.
,
Dong
,
Y.
,
Qin
,
M.
,
Yang
,
J.
,
Qu
,
X.
, and
Li
,
J.
,
2022
, “
Pressureless Two-Step Sintering of Ultrafine-Grained Refractory Metals: Tungsten-Rhenium and Molybdenum
,”
J. Mater. Sci. Technol.
,
126
, pp.
203
214
.
126.
Rybakov
,
K. I.
,
Olevsky
,
E. A.
, and
Krikun
,
E. V.
,
2013
, “
Microwave Sintering: Fundamentals and Modeling
,”
J. Am. Ceram. Soc.
,
96
(
4
), pp.
1003
1020
.
127.
Alem
,
S. A. A.
,
Latifi
,
R.
,
Angizi
,
S.
,
Hassanaghaei
,
F.
,
Aghaahmadi
,
M.
,
Ghasali
,
E.
, and
Rajabi
,
M.
,
2020
, “
Microwave Sintering of Ceramic Reinforced Metal Matrix Composites and Their Properties: A Review
,”
Mater. Manuf. Process.
,
35
(
3
), pp.
303
327
.
128.
Bhoi
,
N. K.
,
Patel
,
D. K.
,
Singh
,
H.
,
Pratap
,
S.
, and
Jain
,
P. K.
,
2022
, “
Multi-Physics Simulation Study of Microwave Hybrid Sintering of Aluminium and Mechanical Characteristics
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
236
(
5
), pp.
1779
1789
.
129.
Hu
,
Z.-Y.
,
Zhang
,
Z.-H.
,
Cheng
,
X.-W.
,
Wang
,
F.-C.
,
Zhang
,
Y.-F.
, and
Li
,
S.-L.
,
2020
, “
A Review of Multi-Physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications
,”
Mater. Des.
,
191
, p.
108662
.
130.
Sharma
,
N.
,
Alam
,
S.
, and
Ray
,
B.
,
2019
, “Fundamentals of Spark Plasma Sintering (SPS): An Ideal Processing Technique for Fabrication of Metal Matrix Nanocomposites,”
Spark Plasma Sintering of Materials: Advances in Processing and Applications
,
Springer Nature
,
Cham, Switzerland
, pp.
21
59
.
131.
Miriyev
,
A.
,
Levy
,
A.
,
Kalabukhov
,
S.
, and
Frage
,
N.
,
2016
, “
Interface Evolution and Shear Strength of Al/Ti Bi-Metals Processed by a Spark Plasma Sintering (SPS) Apparatus
,”
J. Alloys Compd.
,
678
, pp.
329
336
.
132.
Yang
,
L.
,
Wang
,
T.
,
Liu
,
C.
,
Ma
,
Y.
,
Wu
,
L.
,
Yan
,
H.
,
Zhao
,
X.
, and
Liu
,
W.
,
2021
, “
Microstructures and Mechanical Properties of AZ31 Magnesium Alloys Fabricated via Vacuum Hot-Press Sintering
,”
J. Alloys Compd.
,
870
, p.
159473
.
133.
Huang
,
Y.
,
Zhang
,
F.
,
Zhai
,
M.
,
Zhu
,
M.
,
Zhou
,
Y.
,
Tang
,
H.
, and
Xie
,
D.
,
2021
, “
Mechanical Properties and Tribological Behavior of Fe/Nano-Diamond Composite Prepared by Hot-Press Sintering
,”
Int. J. Refract. Met. Hard Mater.
,
95
, p.
105412
.
134.
Yegyan Kumar
,
A.
,
Bai
,
Y.
,
Eklund
,
A.
, and
Williams
,
C. B.
,
2018
, “
The Effects of Hot Isostatic Pressing on Parts Fabricated by Binder Jetting Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
115
124
.
135.
Tian
,
L.
,
Zheng
,
R.
,
Yuan
,
C.
,
Yang
,
G.
,
Shi
,
C.
,
Zhang
,
B.
, and
Zhang
,
Z.
,
2021
, “
Effect of Grain Size on the Corrosion Behavior of Fully Recrystallized Ultra-Fine Grained 316L Stainless Steel Fabricated by High-Energy Ball Milling and Hot Isostatic Pressing Sintering
,”
Mater. Charact.
,
174
, p.
110995
.
136.
Li
,
X.
,
Zhang
,
L.
,
Dong
,
Y.
,
Gao
,
R.
,
Qin
,
M.
,
Qu
,
X.
, and
Li
,
J.
,
2020
, “
Pressureless Two-Step Sintering of Ultrafine-Grained Tungsten
,”
Acta Mater.
,
186
, pp.
116
123
.
137.
Zhang
,
L.
,
Li
,
X.
,
Qu
,
X.
,
Qin
,
M.
,
Que
,
Z.
,
Wei
,
Z.
,
Guo
,
C.
,
Lu
,
X.
, and
Dong
,
Y.
,
2022
, “
Powder Metallurgy Route to Ultrafine-Grained Refractory Metals
,”
Adv. Mater.
,
35
(
50
), p.
2205807
.
138.
Luo
,
S.
,
Liu
,
B.
,
Tian
,
J.
, and
Qian
,
M.
,
2020
, “
Sintering of Titanium in Argon and Vacuum: Pore Evolution and Mechanical Properties
,”
Int. J. Refract. Met. Hard Mater.
,
90
, p.
105226
.
139.
Lee
,
S. W.
,
Kim
,
Y. W.
,
Jang
,
K. M.
,
Lee
,
J. W.
,
Park
,
M.-S.
,
Koo
,
H. Y.
,
Ha
,
G.-H.
, and
Kang
,
Y. C.
,
2022
, “
Phase Control of WC–Co Hardmetal Using Additive Manufacturing Technologies
,”
Powder Metall.
,
65
(
1
), pp.
13
21
.
140.
Ding
,
H.
,
Zeng
,
C.
,
Raush
,
J.
,
Momeni
,
K.
, and
Guo
,
S.
,
2022
, “
Developing Fused Deposition Modeling Additive Manufacturing Processing Strategies for Aluminum Alloy 7075: Sample Preparation and Metallographic Characterization
,”
Materials
,
15
(
4
), p.
1340
.
141.
Annoni
,
M.
,
Giberti
,
H.
, and
Strano
,
M.
,
2016
, “
Feasibility Study of an Extrusion-Based Direct Metal Additive Manufacturing Technique
,”
Procedia Manuf.
,
5
, pp.
916
927
.
142.
Li
,
S.
,
Huang
,
B.
,
Li
,
D.
,
Li
,
Y.
,
Liang
,
S.
, and
Zhou
,
H.
,
2003
, “
Influences of Sintering Atmospheres on Densification Process of Injection Moulded Gas Atomised 316L Stainless Steel
,”
Powder Metall.
,
46
(
3
), pp.
241
245
.
143.
Schaffer
,
G. B.
,
Hall
,
B. J.
,
Bonner
,
S. J.
,
Huo
,
S. H.
, and
Sercombe
,
T. B.
,
2006
, “
The Effect of the Atmosphere and the Role of Pore Filling on the Sintering of Aluminium
,”
Acta Mater.
,
54
(
1
), pp.
131
138
.
144.
Pieczonka
,
T.
,
Schubert
,
T.
,
Baunack
,
S.
, and
Kieback
,
B.
,
2008
, “
Dimensional Behaviour of Aluminium Sintered in Different Atmospheres
,”
Mater. Sci. Eng. A
,
478
(
1–2
), pp.
251
256
.
145.
Chang
,
G.
,
Zhang
,
X.
,
Ma
,
F.
,
Zhang
,
C.
, and
Xu
,
L.
,
2023
, “
Printing, Debinding and Sintering of 15-5PH Stainless Steel Components by Fused Deposition Modeling Additive Manufacturing
,”
Materials
,
16
(
19
), p.
6372
.
146.
Chockalingam
,
K.
,
Kouznetsova
,
V. G.
,
van der Sluis
,
O.
, and
Geers
,
M. G. D.
,
2016
, “
2D Phase Field Modeling of Sintering of Silver Nanoparticles
,”
Phase Field Approaches Fract.
,
312
, pp.
492
508
.
147.
Chen
,
C.
,
Yeom
,
J.
,
Choe
,
C.
,
Liu
,
G.
,
Gao
,
Y.
,
Zhang
,
Z.
,
Zhang
,
B.
,
Kim
,
D.
, and
Suganuma
,
K.
,
2019
, “
Necking Growth and Mechanical Properties of Sintered Ag Particles with Different Shapes Under Air and N2 Atmosphere
,”
J. Mater. Sci.
,
54
(
20
), pp.
13344
13357
.
148.
Bordia
,
R. K.
,
Kang
,
S.-J. L.
, and
Olevsky
,
E. A.
,
2017
, “
Current Understanding and Future Research Directions at the Onset of the Next Century of Sintering Science and Technology
,”
J. Am. Ceram. Soc.
,
100
(
6
), pp.
2314
2352
.
149.
Kang
,
S.-J. L.
,
2004
,”
Sintering: Densification, Grain Growth and Microstructure
,
Elsevier
,
New York
.
150.
Rahaman
,
M. N.
,
2015
,
Sintering Theory and Fundamentals
,
ASM International
.
151.
Kingery
,
W. D.
,
1959
, “
Densification During Sintering in the Presence of a Liquid Phase. I. Theory
,”
J. Appl. Phys.
,
30
(
3
), pp.
301
306
.
152.
German
,
R. M.
,
2014
, “Chapter Seven—Thermodynamic and Kinetic Treatments,”
Sintering: From Empirical Observations to Scientific Principles
,
R. M.
German
, ed.,
Butterworth-Heinemann
,
Waltham, MA
, pp.
183
226
.
153.
Chen
,
Y.
,
Zhang
,
S.
,
Li
,
E.
,
Zou
,
M.
, and
Duan
,
S.
,
2018
, “
Investigation of Low-Temperature Sintering Mechanism on BaO-Nd2O3-TiO2 Dielectric Ceramics with Li2O-B2O3-SiO2 and BaO-ZnO-B2O3 Glasses
,”
Phys. Status Solidi A
,
215
(
13
), p.
1700938
.
154.
German
,
R. M.
,
Suri
,
P.
, and
Park
,
S. J.
,
2009
, “
Liquid Phase Sintering
,”
J. Mater. Sci.
,
44
(
1
), pp.
1
39
.
155.
Riedel
,
R.
, and
Chen
,
I.-W.
,
2010
,
Ceramics Science and Technology
,
Wiley Online Library
.
156.
Lee
,
S.-M.
, and
Kang
,
S.-J. L.
,
1998
, “
Theoretical Analysis of Liquid-Phase Sintering: Pore Filling Theory
,”
Acta Mater.
,
46
(
9
), pp.
3191
3202
.
157.
Tian
,
S.
,
Dai
,
X.
,
Li
,
M.
,
Zhang
,
L.
, and
Chen
,
J.
,
2020
, “
Influence of Initial Distance and Heating Rate on the Aggregation of Cu and Au Nanoparticles: A MD Study
,”
Mod. Phys. Lett. B
,
34
(S
uppl 1
), p.
2150001
.
158.
Luque
,
A.
,
Aldazabal
,
J.
,
Martin-Meizoso
,
A.
,
Martinez-Esnaola
,
J.
,
Sevillano
,
J. G.
, and
Farr
,
R.
,
2005
, “
Simulation of the Microstructural Evolution During Liquid Phase Sintering Using a Geometrical Monte Carlo Model
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
7
), pp.
1057
1070
.
159.
Madhavrao
,
L. R.
, and
Rajagopalan
,
R.
,
1989
, “
Monte Carlo Simulations for Sintering of Particle Aggregates
,”
J. Mater. Res.
,
4
(
5
), pp.
1251
1256
.
160.
Paredes-Goyes
,
B.
,
Jauffres
,
D.
,
Missiaen
,
J.-M.
, and
Martin
,
C. L.
,
2021
, “
Grain Growth in Sintering: A Discrete Element Model on Large Packings
,”
Acta Mater.
,
218
, p.
117182
.
161.
Wang
,
X.
, and
Atkinson
,
A.
,
2018
, “
Combining Densification and Coarsening in a Cellular Automata-Monte-Carlo Simulation of Sintering: Methodology and Calibration
,”
Comput. Mater. Sci.
,
143
, pp.
338
349
.
162.
Nandy
,
J.
,
Yedla
,
N.
,
Gupta
,
P.
,
Sarangi
,
H.
, and
Sahoo
,
S.
,
2019
, “
Sintering of AlSi10Mg Particles in Direct Metal Laser Sintering Process: A Molecular Dynamics Simulation Study
,”
Mater. Chem. Phys.
,
236
, p.
121803
.
163.
Liu
,
Z.
,
Cheng
,
Q.
,
Wang
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2020
, “
Sintering Neck Growth Mechanism of Fe Nanoparticles: A Molecular Dynamics Simulation
,”
Chem. Eng. Sci.
,
218
, p.
115583
.
164.
Wang
,
Y.-F.
,
Yuan
,
J.
,
Sundén
,
B.
, and
Hu
,
Y.-L.
,
2014
, “
Coarse-Grained Molecular Dynamics Investigation of Nanostructures and Thermal Properties of Porous Anode for Solid Oxide Fuel Cell
,”
J. Power Sources
,
254
, pp.
209
217
.
165.
Zhao
,
H.
,
Gui
,
J.
,
Cao
,
J.
, and
Zheng
,
C.
,
2018
, “
Molecular Dynamics Simulation of the Microscopic Sintering Process of CuO Nanograins Inside an Oxygen Carrier Particle
,”
J. Phys. Chem. C
,
122
(
44
), pp.
25595
25605
.
166.
Jeon
,
J.
,
Jiang
,
S.
,
Rahmani
,
F.
, and
Nouranian
,
S.
,
2020
, “
Molecular Dynamics Study of Temperature and Heating Rate–Dependent Sintering of Titanium Nanoparticles and Its Influence on the Sequent Tension Tests of the Formed Particle-Chain Products
,”
J. Nanoparticle Res.
,
22
(
1
), pp.
1
12
.
167.
Wakai
,
F.
, and
Okuma
,
G.
,
2022
, “
Rigid Body Motion of Multiple Particles in Solid-State Sintering
,”
Acta Mater.
,
235
, p.
118092
.
168.
Engelke
,
L.
,
Brendel
,
L.
, and
Wolf
,
D. E.
,
2023
, “
Microstructure Evolution During Sintering: Discrete Element Method Approach
,”
J. Am. Ceram. Soc.
,
106
(
8
), pp.
5022
5032
.
169.
Carazzone
,
J. R.
,
Martin
,
C. L.
, and
Cordero
,
Z. C.
,
2020
, “
Crack Initiation, Propagation, and Arrest in Sintering Powder Aggregates
,”
J. Am. Ceram. Soc.
,
103
(
9
), pp.
4754
4773
.
170.
Chakrabarty
,
A.
,
Biswas
,
R.
,
Basu
,
S.
, and
Nag
,
S.
,
2022
, “
Characterisation of Binary Mixtures of Pellets and Sinter for DEM Simulations
,”
Adv. Powder Technol.
,
33
(
1
), p.
103358
.
171.
Zhao
,
Y.
,
Zhang
,
H.
,
Cai
,
J.
,
Ji
,
S.
, and
Li
,
D.
,
2023
, “
A Prediction Model of Effective Thermal Conductivity for Metal Powder Bed in Additive Manufacturing
,”
Chin. J. Mech. Eng.
,
36
(
1
), pp.
1
11
.
172.
Hartig
,
J.
,
Shetty
,
A.
,
Conklin
,
D. R.
, and
Weimer
,
A. W.
,
2022
, “
Aeration and Cohesive Effects on Flowability in a Vibrating Powder Conveyor
,”
Powder Technol.
,
408
, p.
117724
.
173.
Ganesan
,
V. V.
,
Amerinatanzi
,
A.
, and
Jain
,
A.
,
2022
, “
Discrete Element Modeling (DEM) Simulations of Powder Bed Densification Using Horizontal Compactors in Metal Additive Manufacturing
,”
Powder Technol.
,
405
, p.
117557
.
174.
Matsuda
,
T.
,
2022
, “
Distortion Prediction During Sintering Using Monte Carlo Method Implemented with Virtual Springs
,”
Int. J. Ceram. Eng. Sci.
,
4
(
4
), pp.
270
280
.
175.
Yi
,
M.
,
Wang
,
W.
,
Xue
,
M.
,
Gong
,
Q.
, and
Xu
,
B.-X.
,
2023
, “
Modeling and Simulation of Sintering Process Across Scales
,”
Arch. Comput. Methods Eng.
,
30
(
5
), pp.
3325
3358
.
176.
Lei
,
Y.
,
Li
,
X.
,
Sun
,
R.
,
Tang
,
Y.
, and
Niu
,
W.
,
2020
, “
Effect of Sintering Temperature and Heat Treatment on Microstructure and Properties of Nickel-Based Superalloy
,”
J. Alloys Compd.
,
818
, p.
152882
.
177.
Sweidan
,
F. B.
, and
Ryu
,
H. J.
,
2021
, “
Kinetic Monte Carlo Simulations of the Sintering Microstructural Evolution in Density Graded Stainless Steel Fabricated by SPS
,”
Mater. Today Commun.
,
26
, p.
101863
.
178.
Biswas
,
S.
,
Schwen
,
D.
, and
Tomar
,
V.
,
2018
, “
Implementation of a Phase Field Model for Simulating Evolution of Two Powder Particles Representing Microstructural Changes During Sintering
,”
J. Mater. Sci.
,
53
(
8
), pp.
5799
5825
.
179.
Hötzer
,
J.
,
Seiz
,
M.
,
Kellner
,
M.
,
Rheinheimer
,
W.
, and
Nestler
,
B.
,
2019
, “
Phase-Field Simulation of Solid State Sintering
,”
Acta Mater.
,
164
, pp.
184
195
.
180.
Zhang
,
Z.
,
Yao
,
X.
, and
Ge
,
P.
,
2020
, “
Phase-Field-Model-Based Analysis of the Effects of Powder Particle on Porosities and Densities in Selective Laser Sintering Additive Manufacturing
,”
Int. J. Mech. Sci.
,
166
, p.
105230
.
181.
Ojo-kupoluyi
,
O.
,
Tahir
,
S.
,
Dele-Afolabi
,
T.
, and
Anuar
,
M.
,
2020
, “
Controlling the Sintering Response in the Development of Multilayered Components Produced via Powder Injection Molding Route—A Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
3755
3777
.
182.
Long
,
X.
,
Chong
,
K.
,
Su
,
Y.
,
Du
,
L.
, and
Zhang
,
G.
,
2023
, “
Connecting the Macroscopic and Mesoscopic Properties of Sintered Silver Nanoparticles by Crystal Plasticity Finite Element Method
,”
Eng. Fract. Mech.
,
281
, p.
109137
.
183.
Jorgensen
,
W. L.
, and
Tirado-Rives
,
J.
,
2005
, “
Potential Energy Functions for Atomic-Level Simulations of Water and Organic and Biomolecular Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
19
), pp.
6665
6670
.
184.
Song
,
P.
, and
Wen
,
D.
,
2010
, “
Molecular Dynamics Simulation of the Sintering of Metallic Nanoparticles
,”
J. Nanoparticle Res.
,
12
(
3
), pp.
823
829
.
185.
Sutton
,
R.
, and
Schaffer
,
G.
,
2002
, “
An Atomistic Simulation of Solid State Sintering Using Monte Carlo Methods
,”
Mater. Sci. Eng. A
,
335
(
1–2
), pp.
253
259
.
186.
Homer
,
E. R.
,
Tikare
,
V.
, and
Holm
,
E. A.
,
2013
, “
Hybrid Potts-Phase Field Model for Coupled Microstructural–Compositional Evolution
,”
Comput. Mater. Sci.
,
69
, pp.
414
423
.
187.
Bordère
,
S.
,
2002
, “
Original Monte Carlo Methodology Devoted to the Study of Sintering Processes
,”
J. Am. Ceram. Soc.
,
85
(
7
), pp.
1845
1852
.
188.
Deng
,
J.
,
2012
, “
A Phase Field Model of Sintering with Direction-Dependent Diffusion
,”
Mater. Trans.
,
53
(
2
), pp.
385
389
.
189.
Biswas
,
S.
,
Schwen
,
D.
,
Singh
,
J.
, and
Tomar
,
V.
,
2016
, “
A Study of the Evolution of Microstructure and Consolidation Kinetics During Sintering Using a Phase Field Modeling Based Approach
,”
Extreme Mech. Lett.
,
7
, pp.
78
89
.
190.
Vuppuluri
,
A.
, and
Vedantam
,
S.
,
2019
, “
Simulation of Grain Growth Under Simultaneous Grain Boundary Migration and Grain Rotation Using Multi-Order Parameter Phase-Field Model
,”
J. Mater. Sci.
,
54
(
1
), pp.
506
514
.
191.
Ivannikov
,
V.
,
Thomsen
,
F.
,
Ebel
,
T.
, and
Willumeit-Römer
,
R.
,
2023
, “
Coupling the Discrete Element Method and Solid State Diffusion Equations for Modeling of Metallic Powders Sintering
,”
Comput. Part. Mech.
,
10
(
2
), pp.
185
207
.
192.
Riedel
,
H.
, and
Blug
,
B.
,
2002
, “A Comprehensive Model for Solid State Sintering and Its Application to Silicon Carbide,”
Multiscale Deformation andFracture in Materials and Structures: The James R. Rice 60th Anniversary
,
Springer Nature
, pp.
49
70
.
193.
Bordia
,
R. K.
, and
Scherer
,
G. W.
,
1988
, “
On Constrained Sintering—I. Constitutive Model for a Sintering Body
,”
Acta Metall.
,
36
(
9
), pp.
2393
2397
.
194.
Bordia
,
R. K.
,
Zuo
,
R.
,
Guillon
,
O.
,
Salamone
,
S. M.
, and
Rödel
,
J.
,
2006
, “
Anisotropic Constitutive Laws for Sintering Bodies
,”
Acta Mater.
,
54
(
1
), pp.
111
118
.
195.
Zhang
,
Y.
, and
Zhang
,
J.
,
2016
, “
Sintering Phenomena and Mechanical Strength of Nickel Based Materials in Direct Metal Laser Sintering Process—A Molecular Dynamics Study
,”
J. Mater. Res.
,
31
(
15
), pp.
2233
2243
.
196.
Moitra
,
A.
,
Kim
,
S.
,
Kim
,
S.-G.
,
Park
,
S. J.
,
German
,
R. M.
, and
Horstemeyer
,
M. F.
,
2010
, “
Investigation on Sintering Mechanism of Nanoscale Tungsten Powder Based on Atomistic Simulation
,”
Acta Mater.
,
58
(
11
), pp.
3939
3951
.
197.
Shim
,
J.-H.
,
Lee
,
B.-J.
, and
Cho
,
Y. W.
,
2002
, “
Thermal Stability of Unsupported Gold Nanoparticle: A Molecular Dynamics Study
,”
Surf. Sci.
,
512
(
3
), pp.
262
268
.
198.
Suzuki
,
A.
,
Nakamura
,
K.
,
Sato
,
R.
,
Okushi
,
K.
,
Tsuboi
,
H.
,
Hatakeyama
,
N.
,
Endou
,
A.
,
Takaba
,
H.
,
Kubo
,
M.
, and
Williams
,
M. C.
,
2009
, “
Multi-Scale Theoretical Study of Support Effect on Sintering Dynamics of Pt
,”
Surf. Sci.
,
603
(
20
), pp.
3049
3056
.
199.
Zhang
,
L.
,
Li
,
Q.
,
Tian
,
S.
, and
Hong
,
G.
,
2019
, “
Molecular Dynamics Simulation of the Cu/Au Nanoparticle Alloying Process
,”
J. Nanomater.
,
2019
, p.
7612805
.
200.
Singh
,
R.
, and
Sharma
,
V.
,
2021
, “
Nano Tungsten Carbide Interactions and Mechanical Behaviour During Sintering: A Molecular Dynamics Study
,”
Comput. Mater. Sci.
,
197
, p.
110653
.
201.
Henz
,
B. J.
,
Hawa
,
T.
, and
Zachariah
,
M.
,
2009
, “
Molecular Dynamics Simulation of the Kinetic Sintering of Ni and Al Nanoparticles
,”
Mol. Simul.
,
35
(
10–11
), pp.
804
811
.
202.
Liang
,
M.
,
Xiong
,
Z.
,
Hu
,
Y.
,
Liu
,
Y.
,
Shen
,
T.
,
Sun
,
S.
, and
Zhu
,
Y.
,
2020
, “
Surface Evolution of Janus Cu-Ag Nanoparticles: Influence of Atom Arrangements and Interface Structures
,”
Funct. Mater. Lett.
,
13
(
7
), p.
2050037
.
203.
Xiao
,
X.
,
Jin
,
Y.
,
Peng
,
R.
,
Jiang
,
S.
,
Huang
,
X.
,
Zhao
,
L.
,
Gao
,
J.
, and
Peng
,
J.
,
2023
, “
Microscale Viscous Sintering Model Application to the Preparation of Metal Bonded Diamond Grinding Wheels
,”
Int. J. Refract. Met. Hard Mater.
,
114
, p.
106242
.
204.
Anderson
,
M.
,
Srolovitz
,
D.
,
Grest
,
G.
, and
Sahni
,
P.
,
1984
, “
Computer Simulation of Grain Growth—I. Kinetics
,”
Acta Metall.
,
32
(
5
), pp.
783
791
.
205.
Tikare
,
V.
,
Braginsky
,
M.
,
Bouvard
,
D.
, and
Vagnon
,
A.
,
2010
, “
Numerical Simulation of Microstructural Evolution During Sintering at the Mesoscale in a 3D Powder Compact
,”
Comput. Mater. Sci.
,
48
(
2
), pp.
317
325
.
206.
Lee
,
S.-B.
,
Rickman
,
J.
, and
Rollett
,
A.
,
2007
, “
Three-Dimensional Simulation of Isotropic Coarsening in Liquid Phase Sintering I: A Model
,”
Acta Mater.
,
55
(
2
), pp.
615
626
.
207.
Zhang
,
Y.
,
Xiao
,
X.
, and
Zhang
,
J.
,
2019
, “
Kinetic Monte Carlo Simulation of Sintering Behavior of Additively Manufactured Stainless Steel Powder Particles Using Reconstructed Microstructures From Synchrotron X-Ray Microtomography
,”
Results Phys.
,
13
, p.
102336
.
208.
Liu
,
P.-L.
,
2006
, “
The Relation Between the Distribution of Dihedral Angles and the Wetting Angle During Liquid Phase Sintering
,”
Comput. Mater. Sci.
,
36
(
4
), pp.
468
473
.
209.
Bui
,
T. Q.
, and
Hu
,
X.
,
2021
, “
A Review of Phase-Field Models, Fundamentals and Their Applications to Composite Laminates
,”
Eng. Fract. Mech.
,
248
, p.
107705
.
210.
Dzepina
,
B.
,
Balint
,
D.
, and
Dini
,
D.
,
2019
, “
A Phase Field Model of Pressure-Assisted Sintering
,”
J. Eur. Ceram. Soc.
,
39
(
2
), pp.
173
182
.
211.
Zhang
,
R.
,
Chen
,
Z.
,
Fang
,
W.
, and
Qu
,
X.
,
2014
, “
Thermodynamic Consistent Phase Field Model for Sintering Process with Multiphase Powders
,”
Trans. Nonferrous Met. Soc. China
,
24
(
3
), pp.
783
789
.
212.
Ishii
,
A.
,
Kondo
,
K.
,
Yamamoto
,
A.
, and
Yamanaka
,
A.
,
2023
, “
Phase-Field Modeling of Solid-State Sintering with Interfacial Anisotropy
,”
Mater. Today Commun.
,
35
, p.
106061
.
213.
Hugonnet
,
B.
,
Missiaen
,
J.-M.
,
Martin
,
C.
, and
Rado
,
C.
,
2020
, “
Effect of Contact Alignment on Shrinkage Anisotropy During Sintering: Stereological Model, Discrete Element Model and Experiments on NdFeB Compacts
,”
Mater. Des.
,
191
, p.
108575
.
214.
Martin
,
C. L.
,
Schneider
,
L. C. R.
,
Olmos
,
L.
, and
Bouvard
,
D.
,
2006
, “
Discrete Element Modeling of Metallic Powder Sintering
,”
Scr. Mater.
,
55
(
5
), pp.
425
428
.
215.
Wonisch
,
A.
,
Guillon
,
O.
,
Kraft
,
T.
,
Moseler
,
M.
,
Riedel
,
H.
, and
Rödel
,
J.
,
2007
, “
Stress-Induced Anisotropy of Sintering Alumina: Discrete Element Modelling and Experiments
,”
Acta Mater.
,
55
(
15
), pp.
5187
5199
.
216.
Matsuda
,
T.
,
2021
, “
Development of a DEM Taking Account of Neck Increments Caused by Surface Diffusion for Sintering and Application to Analysis of the Initial Stage of Sintering
,”
Comput. Mater. Sci.
,
196
, p.
110525
.
217.
Nosewicz
,
S.
,
Rojek
,
J.
, and
Chmielewski
,
M.
,
2020
, “
Discrete Element Framework for Determination of Sintering and Postsintering Residual Stresses of Particle Reinforced Composites
,”
Materials
,
13
(
18
), p.
4015
.
218.
Ou
,
H.
,
Sahli
,
M.
,
Gelin
,
J.-C.
, and
Barrière
,
T.
,
2014
, “
Experimental Analysis and Finite Element Simulation of the Co-Sintering of Bi-Material Components
,”
Powder Technol.
,
268
, pp.
269
278
.
219.
Upadhyaya
,
A.
, and
German
,
R. M.
,
1998
, “
Shape Distortion in Liquid-Phase-Sintered Tungsten Heavy Alloys
,”
Metall. Mater. Trans. A
,
29
(
10
), pp.
2631
2638
.
220.
Ganesan
,
R.
,
Griffo
,
A.
, and
German
,
R. M.
,
1998
, “
Finite Element Modeling of Distortion During Liquid Phase Sintering
,”
Metall. Mater. Trans. A
,
29
(
2
), pp.
659
664
.
221.
German
,
R. M.
,
Torresani
,
E.
, and
Olevsky
,
E. A.
,
2023
, “
Gravity-Induced Distortion During Liquid-Phase Sintering
,”
Metall. Mater. Trans. A
,
54
(
11
), pp.
4141
4150
.
222.
Olevsky
,
E.
, and
German
,
R.
,
2000
, “
Effect of Gravity on Dimensional Change During Sintering—I. Shrinkage Anisotropy
,”
Acta Mater.
,
48
(
5
), pp.
1153
1166
.
223.
German
,
R. M.
,
2022
, “
Sintered Tungsten Heavy Alloys: Review of Microstructure, Strength, Densification, and Distortion
,”
Int. J. Refract. Met. Hard Mater.
,
108
, p.
105940
.
224.
Su
,
S.
,
Hong
,
Z.
,
Huang
,
Y.
,
Wang
,
P.
,
Li
,
X.
,
Wu
,
J.
, and
Wu
,
Y.
,
2022
, “
Integrated Numerical Simulations and Experimental Measurements for the Sintering Process of Injection-Molded Ti-6Al-4V Alloy
,”
Materials
,
15
(
22
), p.
8109
.
225.
Zhang
,
K.
,
Zhang
,
W.
,
Brune
,
R.
,
Herderick
,
E.
,
Zhang
,
X.
,
Cornell
,
J.
, and
Forsmark
,
J.
,
2021
, “
Numerical Simulation and Experimental Measurement of Pressureless Sintering of Stainless Steel Part Printed by Binder Jetting Additive Manufacturing
,”
Addit. Manuf.
,
47
, p.
102330
.
226.
Bruchon
,
J.
,
Pino-Muñoz
,
D.
,
Valdivieso
,
F.
, and
Drapier
,
S.
,
2012
, “
Finite Element Simulation of Mass Transport During Sintering of a Granular Packing. Part I. Surface and Lattice Diffusions
,”
J. Am. Ceram. Soc.
,
95
(
8
), pp.
2398
2405
.
227.
Torresani
,
E.
,
Giuntini
,
D.
,
Zhu
,
C.
,
Harrington
,
T.
,
Vecchio
,
K.
,
Molinari
,
A.
,
Bordia
,
R. K.
, and
Olevsky
,
E. A.
,
2019
, “
Anisotropy of Mass Transfer During Sintering of Powder Materials with Pore–Particle Structure Orientation
,”
Metall. Mater. Trans. A
,
50
(
2
), pp.
1033
1049
.
228.
Luchinsky
,
D. G.
,
Hafiychuck
,
V.
,
Wheeler
,
K. R.
,
Biswas
,
S.
,
Roberts
,
C. E.
,
Hanson
,
I. M.
,
Prater
,
T. J.
, and
McClintock
,
P. V.
,
2022
, “
Multi-Scale Modelling of the Bound Metal Deposition Manufacturing of Ti6Al4V
,”
Thermo
,
2
(
3
), pp.
116
148
.
229.
Abdeljawad
,
F.
,
Bolintineanu
,
D. S.
,
Cook
,
A.
,
Brown-Shaklee
,
H.
,
DiAntonio
,
C.
,
Kammler
,
D.
, and
Roach
,
A.
,
2019
, “
Sintering Processes in Direct Ink Write Additive Manufacturing: A Mesoscopic Modeling Approach
,”
Acta Mater.
,
169
, pp.
60
75
.
230.
He
,
H.
,
Rong
,
Y.
, and
Zhang
,
L.
,
2019
, “
Molecular Dynamics Studies on the Sintering and Mechanical Behaviors of Graphene Nanoplatelet Reinforced Aluminum Matrix Composites
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
6
), p.
065006
.
You do not currently have access to this content.