A numerical model to study the fatigue crack retardation in a self-healing material (White et al., 2001, Nature, 409, pp. 794–797) is presented. The approach relies on a combination of cohesive modeling for fatigue crack propagation and a contact algorithm to enforce crack closure due to an artificial wedge in the wake of the crack. The healing kinetics of the self-healing material is captured by introducing along the fracture plane a state variable representing the evolving degree of cure of the healing agent. The atomic-scale processes during the cure of the healing agent are modeled using a coarse-grain molecular dynamics model specifically developed for this purpose. This approach yields the cure kinetics and the mechanical properties as a function of the degree of cure, information that is transmitted to the continuum-scale models. The incorporation of healing kinetics in the model enables us to study the competition between fatigue crack growth and crack retardation mechanisms in this new class of materials. A systematic study of the effect of different loading and healing parameters shows a good qualitative agreement between experimental observations and simulation results.

1.
White
,
S. R.
,
Sottos
,
N. R.
,
Moore
,
J.
,
Geubelle
,
P. H.
,
Kessler
,
M.
,
Brown
,
E.
,
Suresh
,
S.
, and
Viswanathan
,
S.
, 2001, “
Autonomic Healing of Polymer Composites
,”
Nature (London)
0028-0836,
409
, pp.
794
797
.
2.
Brown
,
E. N.
,
White
,
S. R.
, and
Sottos
,
N. R.
, 2005, “
Retardation and Repair of Fatigue Cracks in Microcapsule Toughened Epoxy Composite—Part II: In Situ Self-Healing
,”
Compos. Sci. Technol.
0266-3538,
65
(
15-16
), pp.
2474
2480
.
3.
Brown
,
E. N.
,
Sottos
,
N. R.
, and
White
,
S. R.
, 2002, “
Fracture Testing of a Self Healing Polymer Composite
,”
Exp. Mech.
0014-4851,
42
(
4
), pp.
372
379
.
4.
Maiti
,
S.
, and
Geubelle
,
P. H.
, 2006, “
Cohesive Modeling of Fatigue Crack Retardation in Polymers: Crack Closure Effects
,”
Eng. Fract. Mech.
0013-7944,
73
(
1
), pp.
22
41
.
5.
Maiti
,
S.
, and
Geubelle
,
P. H.
, 2005, “
A Cohesive Model for Fatigue Failure of Polymers
,”
Eng. Fract. Mech.
0013-7944,
72
(
5
), pp.
691
708
.
6.
Curnier
,
A.
, 1999, “
Unilateral Contact: Mechanical Modelling
,” in
New Developments in Contact Problems
,
P.
Wriggers
and
P.
Panagiotopoulos
, (eds.),
Springer
, Wien, pp.
1
54
.
7.
Brown
,
E. N.
, 2003, “
Fracture and Fatigue of a Self-Healing Polymer Composite Material
,” Ph.D. thesis, University of Illinois at Urbana-Champaign.
8.
Della Martina
,
A.
,
Hilborn
,
J. G.
, and
Mühlebach
,
A.
, 2000, “
Macroporous Cross-Linked Poly(dicyclopentadiene)
,”
Macromolecules
0024-9297,
33
, pp.
2916
2921
.
9.
Dono
,
K.
,
Huang
,
J. L.
,
Ma
,
H. Y.
, and
Qian
,
Y. L.
, 2000, “
Ring Opening Metathesis Polymerization of Dicyclopentadiene Catalyzed by Titanium Tetrachloride Adduct Complexes With Nitrogen-Containing Ligands
,”
J. Appl. Polym. Sci.
0021-8995,
77
, pp.
3247
3251
.
10.
Huang
,
L.
, and
Kieffer
,
J.
, 2003, “
Molecular Dynamics Study of Cristobalite Silica Using a Charge Transfer Three-Body Potential Model
,”
J. Chem. Phys.
0021-9606,
118
, pp.
1487
1498
.
11.
McCabe
,
C.
,
Glotzer
,
S. C.
,
Kieffer
,
J.
,
Neurock
,
M.
, and
Cummings
,
P. T.
, 2004, “
Multiscale Simulation of the Synthesis, Assembly and Properties of Nanostructured Organic/Inorganic Hybrid Materials
,”
J. Comput. Theor. Nanosci.
1546-1955,
1
, pp.
265
279
.
12.
Kessler
,
M. R.
, and
White
,
S. R.
, 2002, “
Cure Kinetics of the Ring-Opening Metathesis Polymerization of Dicyclopentadiene
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
40
, pp.
2373
2383
.
13.
Sharp
,
P. K.
,
Clayton
,
J. Q.
, and
Clark
,
G.
, 1997, “
Retardation and Repair of Fatigue Cracks by Adhesive Infiltration
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
20
(
4
), pp.
605
614
.
14.
Ur-Rehman
,
A.
, and
Thomason
,
P. F.
, 1993, “
The Effect of Artificial Fatigue-Crack Closure on Fatigue-Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
16
(
10
), pp.
1081
1090
.
You do not currently have access to this content.