In this paper, the metallurgical phenomena occurring in friction stir welding processes of AA6082-T6 and AA7075-T6 aluminum alloys are investigated. In particular, to predict the local values of the average grain size, either a simple analytical expression depending on a few material constants or a properly trained neural network is linked to the finite element model of the process. The utilized tools, which take as inputs the local values of strain, strain rate, and temperature, were developed starting from experimental data and numerical results.
1.
Liu
, H. J.
, Fujii
, H.
, Maeda
, M.
, and Nogi
, K.
, 2003, “Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017-T351 Aluminum Alloy
,” J. Mater. Process. Technol.
0924-0136, 142
, pp. 692
–696
.2.
Rhodes
, C. G.
, Mahoney
, M. W.
, Bingel
, W. H.
, Spurling
, R. A.
, and Bampton
, C. C.
, 1997, “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum
,” Scr. Mater.
1359-6462, 36
(1
), pp. 69
–75
.3.
Guerra
, M.
, Schmidt
, C.
, McClure
, L. C.
, Murr
, L. E.
, and Nunes
, A. C.
, 2003, “Flow Patterns During Friction Stir Welding
,” Mater. Charact.
1044-5803, 49
, pp. 95
–101
.4.
Shigematsu
, I.
, Kwon
, Y. J.
, Suzuki
, K.
, Imai
, T.
, and Saito
, N.
, 2003, “Joining of 5083 and 6061 Aluminum Alloys by Friction Stir Welding
,” J. Mater. Sci. Lett.
0261-8028, 22
, pp. 343
–356
.5.
Lee
, W. B.
, Yeon
, Y. M.
, and Jung
, S. B.
, 2003, “The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy
,” Mater. Sci. Eng., A
0921-5093, 355
, pp. 154
–159
.6.
Liu
, G.
, Murr
, L. E.
, Niou
, C. S.
, McClure
, J. C.
, and Vega
, F. R.
, 1997, “Micro-structural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum Alloy
,” Scr. Mater.
1359-6462, 37
, pp. 355
–361
.7.
Song
, M.
, and Kovacevic
, R.
, 2003, “Thermal Modeling of Friction Stir Welding in a Moving Coordinate System and Its Validation
,” Int. J. Mach. Tools Manuf.
0890-6955, 43
, pp. 605
–615
.8.
Schmidt
, H.
, Hattel
, J.
, and Wert
, J.
, 2004, “An Analytical Model for the Heat Generation in Friction Stir Welding
,” Modell. Simul. Mater. Sci. Eng.
0965-0393, 12
, pp. 143
–157
.9.
Chao
, Y. J.
, Qi
, X.
, and Tang
, W.
, 2003, “Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,” ASME J. Manuf. Sci. Eng.
1087-1357, 125
, pp. 138
–145
.10.
Chen
, C. M.
, and Kovacevic
, R.
, 2003, “Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis
,” Int. J. Mach. Tools Manuf.
0890-6955, 43
, pp. 1319
–1326
.11.
Lockwood
, W. D.
, and Reynolds
, A. P.
, 2003, “Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior
,” Mater. Sci. Eng., A
0921-5093, 339
, pp. 35
–42
.12.
Xu
, S.
, and Deng
, X.
, 2003, “Two and Three Dimensional Finite Element Models for the Friction Stir Welding Process”
,” Proceedings of the Fourth International Symposium on Friction Stir Welding
, Park City
.13.
Xu
, S.
, and Deng
, X.
, 2002, “A Three-Dimensional Model for the Friction-Stir Welding Process
,” Proceedings of the 21th Southestern Conference on Theoretical and Applied Mechanics
, Orlando, FL
.14.
Deng
, X.
, and Xu
, S.
, 2001, “Solid Mechanics Simulation of Friction Stir Welding Process
,” Trans. NAMRI/SME
1047-3025, 29
, pp. 631
–638
.15.
Buffa
, G.
, and Fratini
, L.
, 2004, “Friction Stir Welding of AA6082-T6 Sheets: Numerical Analysis and Experimental Tests
,” Proceedings of Eighth NUMIFORM Conference
, Columbus
, pp. 1224
–1229
.16.
Buffa
, G.
, and Fratini
, L.
, 2005, “CDRX Modeling in Friction Stir Welding of Aluminum Alloys
,” Int. J. Mach. Tools Manuf.
0890-6955, 45
(10
), pp. 1188
–1194
.17.
Buffa
, G.
, and Fratini
, L.
, 2005, “Numerical Modeling of Friction Stir Welding: A Grain Size Evolution Model
,” Proceedings of Eighth ICTP Conference
.18.
Jata
, K. V.
, and Semiatin
, S. L.
, 2000, “Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys
,” Scr. Mater.
1359-6462, 43
, pp. 743
–749
.19.
Su
, J. Q.
, Nelson
, T. W.
, Mishra
, R.
, and Mahoney
, M.
, 2003, “Microstructural Investigation of Friction Stir Welded 7050-T654 Aluminium
,” Acta Mater.
1359-6454, 51
, pp. 713
–729
.20.
1993,
ASM Speciality Handbook: Aluminum and Aluminum Alloys
, J. R.
Davis
, ed., ASM International
, Metals Park
, OH
.21.
Barcellona
, A.
, Buffa
, G.
, and Fratini
, L.
, 2004, “Process Parameters Analysis in Friction Stir Welding of AA6082-T6 Sheets
,” Keynote Paper of the VII ESAFORM Conference
, Trondhaim
, pp. 371
–374
.22.
2004, DEFORM 3D V5.0, User’s Manual, SFC, Columbus, OH.
23.
Fratini
, L.
, Beccari
, S.
, and Buffa
, G.
, 2005, “Friction Stir Welding FEM Model Improvement Through Inverse Thermal Characterization
,” Trans. NAMRI/SME
1047-3025, 33
, pp. 259
–266
.24.
Buffa
, G.
, Hua
, J.
, Shivpuri
, R.
, and Fratini
, L.
, 2006, “A Continuum Based FEM Model for Friction Stir Welding—Model Development
,” Mater. Sci. Eng., A
0921-5093, 419
(1–2
), pp. 381
–388
.25.
Lenard
, J. G.
, Pietrzyk
, M.
, and Cser
, L.
, 1999, Mathematical and Physical Simulation of the Properties of Hot Rolled Products
, Elsevier
, New York
.26.
Vandermeer
, R. A.
, and Juul Jensen
, D.
, 2001, “Microstructural Path and Temperature Dependence of Recrystallization in Commercial Aluminum
,” Acta Mater.
1359-6454, 49
, pp. 2083
–2094
.27.
McQueen
, H. J.
, and Ryan
, N. D.
, 2002, “Constitutive Analysis in Hot Working
,” Mater. Sci. Eng., A
0921-5093, 322
, pp. 43
–63
.28.
Fu
, L.
, 1994, Neural Networks in Computer Intelligence
, McGraw-Hill
, New York
.29.
Fratini
, L.
, and Lo Nigro
, G.
, 1995, “Neural Network Application in Laser Bending Process: Direct and Inverse Approaches
,” Proceedings of II AITEM Conference
, pp. 11
–20
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.