Abstract

The semiphysics constitutive model developed by Cherkaoui et al. (2006, “From Micro to Macroscopic Description of Martensitic Transformation in Steels: A Viscoplastic Model,” Philos. Mag., in press; ) has been implemented in the user’s material subroutine of the finite element code ABAQUS∕EXPLICIT (2006, Version 6.6 Manuals, Dassault Systemes) to predict the thermomechanical behavior of unstable transformation induced plasticity (TRIP) steel sheets under conditions of forming, which are essentially composite materials with evolving volume fractions of the individual phases. These steels undergoing α martensitic phase transformation exhibit an additional inelastic strain resulting from the phase transformation itself and from the plastic accommodation in parent (austenite) and product (martensite) phases due to different sources of internal stresses. This inelastic strain known as the TRIP strain enhances ductility at an appropriate strength level due to the typical properties of the martensite. A numerical analysis of the effects of the martensitic phase transformation on formability is performed. A validation of the stress-strain behavior and the volume fraction of the martensite are carried out in the case of multiaxial paths at various temperatures. The effects of the stress state and of the kinetics of the martensite phase transformation are analyzed in the case of the cup drawing test. Finally, the numerical predictions are compared to experimental tests on type AISI304 austenitic stainless steels and TRIP800 multiphase industrial steels.

References

1.
Greenwood
,
G. W.
, and
Johnson
,
R. H.
, 1965, “
The Deformation of Metals Under Small Stresses During Phase Transformation
,”
Proc. R. Soc. London, Ser. A
1364-5021,
283
, pp.
403
422
.
2.
Magee
,
C. L.
, 1966, “
Transformation Kinetics, Microplasticity and Aging of Martensite in Fe-31Ni
,” Ph.D. thesis, Carnegie Institute of Technology, Pittsburgh, PA.
3.
Talyan
,
V.
,
Wagoner
,
R. H.
, and
Lee
,
J. K.
, 1998, “
Formability of Stainless Steel
,”
Metall. Mater. Trans. A
1073-5623,
29A
, pp.
2161
2172
.
4.
Kanni Raj
,
A.
, and
Padmanabhan
,
K. A.
, 1999, “
Prediction of the Formability of Metastable Low Nickel Austenitic Stainless Steel Sheets
,”
J. Mater. Process. Technol.
0924-0136,
94
, pp.
201
207
.
5.
Takuda
,
H.
,
Mori
,
K.
,
Masachika
,
T.
,
Yamazaki
,
E.
, and
Watanabe
,
Y.
, 2003, “
Finite Element Analysis of the Formability of an Austenitic Stainless Steel Sheet in Warm Deep Drawing
,”
J. Mater. Process. Technol.
0924-0136,
143–144
, pp.
242
248
.
6.
Stringfellow
,
R. G.
,
Parks
,
D. M.
, and
Olson
,
G. B.
, 1992, “
A Constitutive Model for Transformation Plasticity Accompanying Strain-Induced Martensitic Transformation in Metastable Austenitic Steels
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
1703
1716
.
7.
Iwamoto
,
T.
,
Tsuta
,
T.
, and
Tomita
,
Y.
, 1998, “
Investigation on Deformation Mode Dependence of Strain-Induced Martensitic Transformation in Trip Steels and Modelling of Transformation Kinetics
,”
Int. J. Mech. Sci.
0020-7403,
40
, pp.
173
182
.
8.
Perlade
,
A.
,
Bouaziz
,
O.
, and
Furnemont
,
Q.
, 2003, “
A Physically Based Model for Trip-Aided Carbon Steels Behaviour
,”
Mater. Sci. Eng., A
0921-5093,
356
(
1–2
), pp.
145
152
.
9.
Lecroisey
,
F.
, and
Pineau
,
A.
, 1972,
Metall. Trans.
0026-086X,
3
, pp.
387
396
.
10.
Olson
,
G. B.
, and
Cohen
,
M.
, 1975, “
Kinetics of Strain-Induced Martensitic Nucleation
,”
Metall. Trans. A
0360-2133,
6A
, pp.
791
795
.
11.
Cherkaoui
,
M.
,
Berveiller
,
M.
, and
Sabar
,
H.
, 1998, “
Micromechanical Modeling of Martensitic TRansformation Induced Plasticity (TRIP) in Austenitic Single Crystals
,”
Int. J. Plast.
0749-6419,
14
, pp.
597
626
.
12.
Levitas
,
V. I.
, 1998, “
Thermomechanical Theory of Martensitic Phase Transformations in Inelastic Materials
,”
Int. J. Solids Struct.
0020-7683,
35
(
9–10
), pp.
889
940
.
13.
DeMania
,
A. D.
, 1995, “
The Influence of Martensite Transformation on the Formability of Stainless Steel Sheet
,” MS thesis, Department of Mechanical Engineering, MIT.
14.
Miller
,
M. P.
, and
McDowell
,
D. L.
, 1996, “
The Effect of Stress State on the Large Strain Inelastic Deformation Behaviour of 304L Stainless Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
, p.
28
.
15.
Diani
,
J. M.
, and
Parks
,
D. M.
, 1998, “
Effects of Strain State on the Kinetics of Strain Induced Martensite in Steels
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1613
1635
.
16.
Lebedev
,
A. A.
, and
Kosarchuk
,
V. V.
, 2000, “
Influence of Phase Transformations on the Mechanical Properties of Austenitic Stainless Steels
,”
Int. J. Plast.
0749-6419,
16
, pp.
749
767
.
17.
Jacques
,
P.
,
Furnemont
,
Q.
,
Pardoen
,
T.
, and
Delannay
,
F.
, 2001, “
On the Role of Martensitic Transformation on Damage and Cracking Resistance in Trip-Assisted Multiphase Steels
,”
Acta Mater.
1359-6454,
49
, pp.
139
152
.
18.
Andersson
,
R.
,
Oden
,
M.
, and
Magnusson
,
C.
, 2005, “
A New Equation to Describe the Microstructural Transformation of Meta-Stable Austenitic Stainless Steels During Plastic Deformation
,”
, submitted.
19.
Azzouz
,
F.
,
Cailletaud
,
G.
,
Antretter
,
T.
,
Fischer
,
F. D.
, and
Tanaka
,
K.
, 2000, “
Transformation Induced Plasticity (TRIP) in Steels Subjected to Nonmonotonic Loading Paths—Experiments and Theory
,”
Proceedings of the Conference on Plasticity
,
Vancouver
, pp.
175
177
.
20.
Prantil
,
V. C.
,
Callabresi
,
M. L.
,
Lathrop
,
J. F.
,
Ramaswamy
,
G. S.
, and
Lusk
,
M. T.
, 2003, “
Simulating Distortion and Residual Stresses in Carburized Thin Strips
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
, pp.
116
124
.
21.
Cherkaoui
,
M.
,
Berveiller
,
M.
, and
Lemoine
,
X.
, 2000, “
Couplings Between Plasticity and Martensitic Phase Transformation: Overall Behaviour of Polycrystalline TRIP Steels
,”
Int. J. Plast.
0749-6419,
16
, pp.
1215
1241
.
22.
Leblond
,
J. B.
, 1989, “
Mathematical Modelling of Transformation Plasticity in Steels II: Coupling With Strain Hardening Phenomena
,”
Int. J. Plast.
0749-6419,
5
, pp.
573
591
.
23.
Taleb
,
L.
, and
Sidoroff
,
F.
, 2003, “
A Micromechanical Modeling of the Greenwood-Johnson Mechanism in Transformation Induced Plasticity
,”
Int. J. Plast.
0749-6419,
19
(
10
), pp.
1821
1842
.
24.
Idesman
,
A. V.
,
Levitas
,
V. I.
, and
Stein
,
E.
, 1999, “
Elastoplastic Materials With Martensitic Phase Transformation and Twinning at Finite Strains: Numerical Solution With the Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
173
, pp.
71
98
.
25.
Reisner
,
G.
,
Werner
,
E. A.
, and
Fischer
,
F. D.
, 1998, “
Micromechanical Modeling of Martensitic Transformation in Random Microstructures
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
2457
2473
.
26.
Tsuchida
,
N.
, and
Tomota
,
Y.
, 2000, “
A Micromechanic Modeling for Transformation Induced Plasticity in Steels
,”
Mater. Sci. Eng., A
0921-5093,
285
, pp.
346
352
.
27.
Fischer
,
F. D.
,
Reisner
,
G.
,
Werner
,
E.
,
Tanaka
,
K.
,
Cailletaud
,
G.
, and
Antretter
,
T.
, 2000, “
A New View on Transformation Induced Plasticity
,”
Int. J. Plast.
0749-6419,
16
, pp.
723
748
.
28.
Beaudoin
,
A. J.
,
Dawson
,
P. R.
,
Mathur
,
K. K.
,
Kocks
,
U. F.
, and
Korzekwa
,
D. A.
, 1994, “
Application of Polycrystal Plasticity to Sheet Forming
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
117
, pp.
49
70
.
29.
Bacroix
,
B.
, and
Gilormini
,
P.
, 1995, “
Finite-Element Simulations of Earing in Polycrystalline Materials Using a Texture-Adjusted Strain-Rate Potential
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
3
, pp.
1
21
.
30.
Van Houtte
,
P.
,
Van Bael
,
A.
, and
Winters
,
J.
, 1995, “
The Incorporation of Texture-Based Yield Loci Into Elasto-Plastic Finite Element Programs
,”
Textures Microstruct.
0730-3300,
24
, pp.
255
272
.
31.
Inal
,
K.
,
Wu
,
P. D.
, and
Neale
,
K. W.
, 2002, “
Finite Element Analysis of Localization in FCC Polycrystalline Sheets Under Plane Stress Tension
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3469
3486
.
32.
Knibloe
,
J. R.
, and
Wagoner
,
R.
, 1989, “
Experimental Investigation and Finite Element Modeling of Hemispherically Stretched Steel Sheet
,”
Metall. Trans. A
0360-2133,
20A
, pp.
1509
1521
.
33.
Taylor
,
L.
,
Cao
,
J.
,
Karafillis
,
A. P.
, and
Boyce
,
M. C.
, 1995, “
Numerical Simulations of Sheet-Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
50
, pp.
168
179
.
34.
Chung
,
K.
,
Lee
,
S. Y.
,
Barlat
,
F.
,
Keum
,
Y. T.
, and
Park
,
J. M.
, 1996, “
Finite Element Simulation of Sheet Forming Based on Anisotropic Strain-Rate Potential
,”
Int. J. Plast.
0749-6419,
12
, pp.
93
115
.
35.
Moreira
,
L. P.
,
Ferron
,
G.
, and
Ferran
,
G.
, 2000, “
Experimental and Numerical Analysis of the Cup Drawing Test for Orthotropic Metal Sheets
,”
J. Mater. Process. Technol.
0924-0136,
108
, pp.
78
86
.
36.
Inal
,
K.
,
Wu
,
P. D.
, and
Neale
,
K. W.
, 2000, “
Simulation of Earing in Textured Aluminum Sheets
,”
Int. J. Plast.
0749-6419,
16
, pp.
635
648
.
37.
Butuc
,
M. C.
,
Banabic
,
D.
,
Barata da Rocha
,
A.
,
Gracio
,
J. J.
,
Ferreira Duarte
,
J.
,
Jurco
,
P.
, and
Comsa
,
A.
, 2002, “
The Performance of Yld96 and BBC2000 Yield Functions in Forming Limit Prediction
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
281
286
.
38.
Iwamoto
,
T.
, and
Tsuta
,
T.
, 2002, “
Computational Simulation on Deformation Behaviour of CT Specimens of Trip Steel Under Mode I Loading for Evaluation of Fracture Toughness
,”
Int. J. Plast.
0749-6419,
18
, pp.
1583
1606
.
39.
Tomita
,
Y.
, and
Iwamoto
,
T.
, 2001, “
Computational Prediction of Deformation Behaviour of TRIP Steels Under Cyclic Loading
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2017
2034
.
40.
Cherkaoui
,
M.
,
Soulami
,
A.
,
Sun
,
X.
, and
Khaleel
,
M. A.
, 2006, “
From Micro to Macroscopic Description of Martensitic Transformation in Steels: A Viscoplastic Model
,”
, in press;
, in press.
41.
ABAQUS∕EXPLICIT, 2006, Version 6.6 Manuals, Dassault Systemes.
42.
Kocks
,
U. F.
, and
Mecking
,
H.
, 2003, “
Physics and Phenomenology of Strain Hardening
,”
Prog. Mater. Sci.
0079-6425,
48
, pp.
171
273
.
43.
Estrin
,
Y.
, 1998, “
Dislocation Theory Based Constitutive Modelling: Foundations and Applications
,”
J. Mater. Process. Technol.
0924-0136,
80–81
, pp.
33
39
.
44.
Patel
,
J. R.
, and
Cohen
,
M.
, 1953, “
Criterion for the Action of Applied Stress in the Martensitic Transformation
,”
Acta Metall.
0001-6160,
1
, pp.
531
538
.
45.
Hecker
,
S. S.
,
Stout
,
M. G.
,
Staudhammer
,
K. P.
, and
Smith
,
J. L.
, 1982, “
Effects of Strain State and Strain Rate on Deformation Induced Transformation in Stainless Steel. I. Magnetic Measurements and Mechanical Behaviour
,”
Metall. Trans. A
0360-2133,
13A
, pp.
619
626
.
46.
Murr
,
L. E.
, 1981, “
Strain Induced Dislocation Emission From Grain Boundaries in Stainless Steel
,”
Mater. Sci. Eng.
0025-5416,
51
, pp.
71
79
.
47.
Furnemont
,
Q.
, 2003, “
The Micromechanics of TRIP-Assisted Multiphase Steels
,” Ph.D. thesis, Universite Catholique de Louvain.
48.
Wechsler
,
M. S.
,
Lieberman
,
D. S.
, and
Read
,
T. A.
, 1953, “
On the Theory of the Formation of Martensite
,”
Trans. AIME
0096-4778,
197
, pp.
1503
1515
.
49.
Kuhlman-Wilsdorf
,
D.
, 1962,
Trans. Metall. Soc. AIME
0543-5722,
218
, p.
962
.
50.
Stokes
,
R. J.
, and
Cottrel
,
A. H.
, 1954, “
Work Softening in Aluminium Crystals
,”
Acta Metall.
0001-6160,
2
, pp.
341
342
.
51.
Nes
,
E.
, 1997, “
Modelling of Work Hardening and Stress Saturationin FCC Metals
,”
Prog. Mater. Sci.
0079-6425,
41
, pp.
129
193
.
52.
Cheng
,
S.
,
Ma
,
E.
, 2005, “
Tensile Properties of In Situ Consolidated Nanocrystalline Cu
,”
Acta Mater.
1359-6454,
53
, pp.
1521
1533
.
53.
Wei
,
Q.
,
Cheng
,
S.
,
Ramesh
,
K. T.
, and
Ma
,
E.
, 2004, “
Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: fcc Versus bcc Metals
,”
Mater. Sci. Eng., A
0921-5093,
381
, pp.
71
79
.
54.
Taylor
,
G. I.
, 1934, “
The Mechanism of Plastic Deformations of Crystals
,”
Proc. R. Soc. London, Ser. A
0950-1207,
145
, pp.
362
415
.
55.
Li
,
J. C. M.
, 1963, “
Petch Relation and Grain Boundary Sources
,”
Trans. Metall. Soc. AIME
0543-5722,
227
, p.
239
.
56.
Estrin
,
Y.
, and
Mecking
,
H.
, 1984, “
A Unified Phenomenolgical Description of Work Hardening and Creep Based on One Parameter Models
,”
Acta Metall.
0001-6160,
32
, pp.
57
70
.
57.
Kocks
,
U. F.
, 1976, “
Laws for Work Hardening and Low Temperature Creep
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
76
85
.
58.
Serri
,
J.
, 2006, “
Caractérisation expérimentale et modélisation du comportement plastique d’aciers à transformation martensitique. Applications à la mise en Forme
.” Thèse de doctorat, Université de Metz.
59.
Sumitomo
,
H.
,
Arakawa
,
M.
,
Sawatani
,
T.
, and
Ohoka
,
T.
, 1976,
J. Jpn. Soc. Technol. Plast.
0038-1586,
17
, p.
891
.
60.
Serri
,
J.
,
Martiny
,
M.
, and
Ferron
,
G.
, 2005, “
Finite Element Analysis of the Effects of Martensitic Phase Transformation in Trip Steel Sheet Forming
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
884
901
.
61.
Kubler
,
R.
, 2004, “
Comportement thermomécanique des aciers à effet TRIP: Approches micromécaniques et phénoménologiques—applications à la mise en forme
,” thèse de doctorat, ENSAM de Metz.
62.
Hourman
,
T.
,
Hochard
,
J. L.
, and
Mess
,
G.
, 2000, LEDEPP, Arcelor, rapport interne.
63.
Sumitomo
,
H.
, 1978, “
Earing and Delayed Cracking of Deep Drawn Cup of Austenitic Stainless Steel Sheets
,”
Advanced Technology of Plasticity
,
2
, pp.
1289
1297
.
You do not currently have access to this content.