The finite-volume direct averaging micromechanics (FVDAM) theory for periodic heterogeneous materials is extended by incorporating parametric mapping into the theory’s analytical framework. The parametric mapping enables modeling of heterogeneous microstructures using quadrilateral subvolume discretization, in contrast with the standard version based on rectangular subdomains. Thus arbitrarily shaped inclusions or porosities can be efficiently rendered without the artificially induced stress concentrations at fiber/matrix interfaces caused by staircase approximations of curved boundaries. Relatively coarse unit cell discretizations yield effective moduli with comparable accuracy of the finite-element method. The local stress fields require greater, but not exceedingly fine, unit cell refinement to generate results comparable with exact elasticity solutions. The FVDAM theory’s parametric formulation produces a paradigm shift in the continuing evolution of this approach, enabling high-resolution simulation of local fields with much greater efficiency and confidence than the standard theory.

1.
Drago
,
A. S.
, and
Pindera
,
M.-J.
, 2007, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures
,”
Compos. Sci. Technol.
0266-3538,
67
(
6
), pp.
1243
1263
.
2.
Sanchez-Palencia
,
E.
, 1980,
Non-Inhomogeneous Media and Vibration Theory
(
Lecture Notes in Physics 127
),
Springer-Verlag
,
Berlin
.
3.
Suquet
,
P. M.
, 1987,
Elements of Homogenization for Inelastic Solid Mechanics
(
Lecture Notes in Physics 272
),
Springer-Verlag
,
Berlin
, pp.
193
278
.
4.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2005, “
A Second Look at the Higher-order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
177
195
, see also NASA CR2004-213043.
5.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2006, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
0749-6419,
22
(
5
), pp.
775
825
.
6.
Pindera
,
M.-J.
, and
Bansal
,
Y.
, 2007, “
On the Micromechanics-Based Simulation of Metal Matrix Composite Response
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
3
), pp.
468
482
.
7.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 1999, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
1359-8368,
30
(
8
), pp.
777
832
.
8.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 2001, “
Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
68
(
5
), pp.
697
707
.
9.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 2003, “
Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases
,”
Int. J. Plast.
0749-6419,
19
, pp.
805
847
.
10.
Bufler
,
H.
, 1971, “
Theory of Elasticity of a Multilayered Medium
,”
J. Elast.
0374-3535,
1
, pp.
125
143
.
11.
Pindera
,
M.-J.
, 1991, “
Local/Global Stiffness Matrix Formulation for Composite Materials and Structures
,”
Composites Eng.
0961-9526,
1
(
2
), pp.
69
83
.
12.
Zhong
,
Y.
,
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2004, “
Efficient Reformulation of the Thermal Higher-Order Theory for FGMs With Variable Thermal Conductivity
,”
Int. J. Comput. Eng. Sci.
1465-8763,
5
(
4
), pp.
795
831
.
13.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2003, “
Efficient Reformulation of the Thermoelastic Higher-Order Theory for FGMs
,”
J. Therm. Stresses
0149-5739,
26
(
11/12
), pp.
1055
1092
.
14.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Prentice-Hall
,
New York
.
15.
Cavalcante
,
M. A. A.
, 2006, “
Modelling of the Transient Thermo-Mechanical Behavior of Composite Material Structures by the Finite-Volume Theory
,” M.S. thesis, Civil Engineering Department, Federal University of Alagoas, Maceio.
16.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
935
945
.
17.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part II: Numerical Results
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
946
957
.
18.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
19.
Gattu
,
M.
, 2007, “
Parametric Finite Volume Theory for Periodic Heterogeneous Materials
,” M.S. thesis, Civil Engineering Department, University of Virginia, Charlottesville.
20.
Drago
,
A. S.
, and
Pindera
,
M.-J.
, 2008, “
A Locally-Exact Homogenization Theory for Periodic Heterogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936, in press.
21.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
22.
Dugdale
,
D. S.
, and
Ruiz
,
C.
, 1971,
Elasticity for Engineers
,
McGraw-Hill
,
London
.
23.
Moorthy
,
S.
, and
Ghosh
,
S.
, 2000, “
Adaptivity and Convergence in the Voronoi Cell Finite Element Model for Analyzing Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
185
, pp.
37
74
.
24.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
, 2001, “
A Multi-Level Computational Model for Multiscale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
0020-7683,
38
(
14
), pp.
2335
2385
.
25.
Chaboche
,
J. L.
,
Kanouté
,
P.
, and
Roos
,
A.
, 2005, “
On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
21
(
7
), pp.
1409
1434
.
26.
Doghri
,
I.
, and
Tinel
,
L.
, 2005, “
Micromechanical Modeling and Computation of Elastic-Plastic Materials Reinforced With Distributed-Orientation Fibers
,”
Int. J. Plast.
0749-6419,
21
(
10
), pp.
1919
1940
.
27.
Ma
,
H.
, and
Hu
,
G.
, 2006, “
Influence of Fiber’s Shape and Size on Overall Elastoplastic Property for Micropolar Composites
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3025
3043
.
28.
Paulino
,
G. H.
,
Yin
,
H. M.
, and
Sun
,
L. Z.
, 2006, “
Micromechanics-Based Interfacial Debonding Model for Damage of Functionally Graded Materials With Particle Interactions
,”
Int. J. Damage Mech.
1056-7895,
15
(
3
), pp.
267
288
.
29.
Lipton
,
R. P.
, 2003, “
Assessment of the Local Stress State Through Macroscopic Variables
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
361
, pp.
921
946
.
You do not currently have access to this content.