The force-depth behavior of indentation into fibrillar-structured surfaces such as those consisting of forests of micro- or nanoscale tubes or rods is a depth-dependent behavior governed by compression, bending, and buckling of the nanotubes. Using a micromechanical model of the indentation process, the effective elastic properties of the constituent tubes or rods as well as the effective properties of the forest can be deduced from load-depth curves of indentation into forests. These studies provide fundamental understanding of the mechanics of indentation of nanotube forests, showing the potential to use indentation to deduce individual nanotube or nanorod properties as well as the effective indentation properties of such nanostructured surface coatings. In particular, the indentation behavior can be engineered by tailoring various forest features, where the force-depth behavior scales linearly with tube areal density (m, number per unit area), tube moment of inertia (I), tube modulus (E), and indenter radius (R) and scales inversely with the square of tube length (L2), which provides guidelines for designing forests whether to meet indentation stiffness or for energy storage applications in microdevice designs.

1.
Geim
,
A. K.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
,
Novoselov
,
K. S.
,
Zhukov
,
A. A.
, and
Shapoval
,
S. Y.
, 2003, “
Microfabricated Adhesive Mimicking Gecko Foot-Hair
,”
Nature Mater.
1476-1122,
2
(
7
), pp.
461
463
.
2.
Lee
,
H.
,
Lee
,
B. P.
, and
Messersmith
,
P. B.
, 2007, “
A Reversible Wet/Dry Adhesive Inspired by Mussels and Geckos
,”
Nature (London)
0028-0836,
448
(
7151
), pp.
338
341
.
3.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Kim
,
J.
, 2004, “
Design of Biomimetic Fibrillar Interfaces: 1. Making Contact
,”
J. R. Soc. Interface
,
1
(
1
), pp.
23
33
.
4.
Zeng
,
H. B.
,
Pesika
,
N.
,
Tian
,
Y.
,
Zhao
,
B. X.
,
Chen
,
Y. F.
,
Tirrell
,
M.
,
Turner
,
K. L.
, and
Israelachvili
,
J. N.
, 2009, “
Frictional Adhesion of Patterned Surfaces and Implications for Gecko and Biomimetic Systems
,”
Langmuir
0743-7463,
25
(
13
), pp.
7486
7495
.
5.
Feng
,
L.
,
Li
,
S. H.
,
Li
,
Y. S.
,
Li
,
H. J.
,
Zhang
,
L. J.
,
Zhai
,
J.
,
Song
,
Y. L.
,
Liu
,
B. Q.
,
Jiang
,
L.
, and
Zhu
,
D. B.
, 2002, “
Super-Hydrophobic Surfaces: From Natural to Artificial
,”
Adv. Mater.
0935-9648,
14
(
24
), pp.
1857
1860
.
6.
Krupenkin
,
T. N.
,
Taylor
,
J. A.
,
Schneider
,
T. M.
, and
Yang
,
S.
, 2004, “
From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
,”
Langmuir
0743-7463,
20
(
10
), pp.
3824
3827
.
7.
Guo
,
Z. G.
,
Zhou
,
F.
,
Hao
,
J. C.
, and
Liu
,
W. M.
, 2005, “
Stable Biomimetic Super-Hydrophobic Engineering Materials
,”
J. Am. Chem. Soc.
0002-7863,
127
(
45
), pp.
15670
15671
.
8.
Xia
,
Y. N.
,
Yang
,
P. D.
,
Sun
,
Y. G.
,
Wu
,
Y. Y.
,
Mayers
,
B.
,
Gates
,
B.
,
Yin
,
Y. D.
,
Kim
,
F.
, and
Yan
,
Y. Q.
, 2003, “
One-Dimensional Nanostructures: Synthesis, Characterization, and Applications
,”
Adv. Mater.
0935-9648,
15
(
5
), pp.
353
389
.
9.
Mor
,
G. K.
,
Shankar
,
K.
,
Paulose
,
M.
,
Varghese
,
O. K.
, and
Grimes
,
C. A.
, 2006, “
Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells
,”
Nano Lett.
1530-6984,
6
(
2
), pp.
215
218
.
10.
Varghese
,
O. K.
,
Paulose
,
M.
, and
Grimes
,
C. A.
, 2009, “
Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells
,”
Nat. Nanotechnol.
1748-3387,
4
(
9
), pp.
592
597
.
11.
Berdichevsky
,
Y.
, and
Lo
,
Y. H.
, 2006, “
Polypyrrole Nanowire Actuators
,”
Adv. Mater.
0935-9648,
18
(
1
), pp.
122
125
.
12.
Sidorenko
,
A.
,
Krupenkin
,
T.
,
Taylor
,
A.
,
Fratzl
,
P.
, and
Aizenberg
,
J.
, 2007, “
Reversible Switching of Hydrogel-Actuated Nanostructures Into Complex Micropatterns
,”
Science
0036-8075,
315
(
5811
), pp.
487
490
.
13.
Pokroy
,
B.
,
Epstein
,
A. K.
,
Persson-Gulda
,
M. C. M.
, and
Aizenberg
,
J.
, 2009, “
Fabrication of Bioinspired Actuated Nanostructures With Arbitrary Geometry and Stiffness
,”
Adv. Mater.
0935-9648,
21
(
4
), pp.
463
467
.
14.
Cao
,
A. Y.
,
Dickrell
,
P. L.
,
Sawyer
,
W. G.
,
Ghasemi-Nejhad
,
M. N.
, and
Ajayan
,
P. M.
, 2005, “
Super-Compressible Foamlike Carbon Nanotube Films
,”
Science
0036-8075,
310
(
5752
), pp.
1307
1310
.
15.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Jin
,
S.
,
Wang
,
W.
, and
Rao
,
A. M.
, 2006, “
Impact Response by a Foamlike Forest of Coiled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
100
(
6
), p.
064309
.
16.
Coluci
,
V. R.
,
Fonseca
,
A. F.
,
Galvao
,
D. S.
, and
Daraio
,
C.
, 2008, “
Entanglement and the Nonlinear Elastic Behavior of Forests of Coiled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
100
(
8
), p.
086807
.
17.
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Riveline
,
D.
,
Goichberg
,
P.
,
Tzur
,
G.
,
Sabanay
,
I.
,
Mahalu
,
D.
,
Safran
,
S.
,
Bershadsky
,
A.
,
Addadi
,
L.
, and
Geiger
,
B.
, 2001, “
Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates
,”
Nat. Cell Biol.
1465-7392,
3
(
5
), pp.
466
472
.
18.
Park
,
S.
,
Kim
,
Y. S.
,
Kim
,
W. B.
, and
Jon
,
S.
, 2009, “
Carbon Nanosyringe Array as a Platform for Intracellular Delivery
,”
Nano Lett.
1530-6984,
9
(
4
), pp.
1325
1329
.
19.
Nomura
,
S.
,
Kojima
,
H.
,
Ohyabu
,
Y.
,
Kuwabara
,
K.
,
Miyauchi
,
A.
, and
Uemura
,
T.
, 2005, “
Cell Culture on Nanopillar Sheet: Study of HeLa Cells on Nanopillar Sheet
,”
Jpn. J. Appl. Phys., Part 2
0021-4922,
44
(
37–41
), pp.
L1184
L1186
.
20.
Lin
,
I. K.
,
Ou
,
K. S.
,
Liao
,
Y. M.
,
Liu
,
Y.
,
Chen
,
K. S.
, and
Zhang
,
X.
, 2009, “
Viscoelastic Characterization and Modeling of Polymer Transducers for Biological Applications
,”
J. Microelectromech. Syst.
1057-7157,
18
(
5
), pp.
1087
1099
.
21.
Rehfeldt
,
F.
,
Engler
,
A. J.
,
Eckhardt
,
A.
,
Ahmed
,
F.
, and
Diseher
,
D. E.
, 2007, “
Cell Responses to the Mechanochemical Microenvironment—Implications for Regenerative Medicine and Drug Delivery
,”
Adv. Drug Delivery Rev.
0169-409X,
59
(
13
), pp.
1329
1339
.
22.
Chia
,
K. K.
,
Rubner
,
M. F.
, and
Cohen
,
R. E.
, 2009, “
pH-Responsive Reversibly Swellable Nanotube Arrays
,”
Langmuir
0743-7463,
25
(
24
), pp.
14044
14052
.
23.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
(
5453
), pp.
637
640
.
24.
Zhu
,
Y.
, and
Espinosa
,
H. D.
, 2005, “
An Electromechanical Material Testing System for In Situ Electron Microscopy and Applications
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
41
), pp.
14503
14508
.
25.
Uchic
,
M. D.
,
Dimiduk
,
D. M.
,
Florando
,
J. N.
, and
Nix
,
W. D.
, 2004, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
0036-8075,
305
(
5686
), pp.
986
989
.
26.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
(
5334
), pp.
1971
1975
.
27.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1583
.
28.
Qi
,
H. J.
,
Teo
,
K. B. K.
,
Lau
,
K. K. S.
,
Boyce
,
M. C.
,
Milne
,
W. I.
,
Robertson
,
J.
, and
Gleason
,
K. K.
, 2003, “
Determination of Mechanical Properties of Carbon Nanotubes and Vertically Aligned Carbon Nanotube Forests Using Nanoindentation
,”
J. Mech. Phys. Solids
0022-5096,
51
(
11–12
), pp.
2213
2237
.
29.
Waters
,
J. F.
,
Guduru
,
P. R.
,
Jouzi
,
M.
,
Xu
,
J. M.
,
Hanlon
,
T.
, and
Suresh
,
S.
, 2005, “
Shell Buckling of Individual Multiwalled Carbon Nanotubes Using Nanoindentation
,”
Appl. Phys. Lett.
0003-6951,
87
(
10
), p.
103109
.
30.
Li
,
X. D.
,
Hao
,
H. S.
,
Murphy
,
C. J.
, and
Caswell
,
K. K.
, 2003, “
Nanoindentation of Silver Nanowires
,”
Nano Lett.
1530-6984,
3
(
11
), pp.
1495
1498
.
31.
Mao
,
S. X.
,
Zhao
,
M. H.
, and
Wang
,
Z. L.
, 2003, “
Nanoscale Mechanical Behavior of Individual Semiconducting Nanobelts
,”
Appl. Phys. Lett.
0003-6951,
83
(
5
), pp.
993
995
.
32.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
33.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
34.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
, 2000, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature (London)
0028-0836,
405
(
6787
), pp.
681
685
.
35.
Yao
,
H.
,
Della Rocca
,
G.
,
Guduru
,
P. R.
, and
Gao
,
H.
, 2008, “
Adhesion and Sliding Response of a Biologically Inspired Fibrillar Surface: Experimental Observations
,”
J. R. Soc. Interface
,
5
(
24
), pp.
723
733
.
36.
Lee
,
J. H.
,
Fearing
,
R. S.
, and
Komvopoulos
,
K.
, 2008, “
Directional Adhesion of Gecko-Inspired Angled Microfiber Arrays
,”
Appl. Phys. Lett.
0003-6951,
93
(
19
), p.
191910
.
You do not currently have access to this content.