This study presents a multiscale computational model and its application to predict damage dependent mechanical behavior of bituminous mixtures subjected to cyclic loading. Two length scales (global and local) are two-way coupled in the model framework by linking a homogenized global scale to a heterogeneous local scale representative volume element. Based on the unique two-way coupled multiscaling and the use of the finite element technique incorporated with the material viscoelasticity and cohesive zone fracture, the model approach can successfully account for the effect of mixture heterogeneity, material viscoelasticity, and damage accumulation due to cracks in the small scale on the overall performance of larger scale mixtures or structures. This step requires only the properties of individual constituents. To demonstrate the model and its features, bending beam fatigue testing of a bituminous mixture, which is composed of elastic aggregates and viscoelastic bitumen, is simulated by altering the mixture's constituent properties. The model clearly presents progressive damage characteristics with repetitive loading cycles and the analysis clearly demonstrates the sensitivity of the approach to constituent material properties. The multiscale model presented herein is expected to drastically reduce time-consuming and expensive fatigue tests, which, when performed in the traditional manner, require many replicates and do not define the cause of microstructural fatigue, damage, and failure.

References

1.
Masad
,
E.
,
Niranjanan
,
S.
,
Bahia
,
H.
, and
Kose
,
S.
,
2001
, “
Modeling and Experimental Measurements of Localized Strain Distribution in Asphalt Mixes
,”
J. Transp. Eng.
,
127
(
6
), pp.
477
485
.10.1061/(ASCE)0733-947X(2001)127:6(477)
2.
Soares
,
J. B.
,
Freitas
,
F. A.
, and
Allen
,
D. H.
,
2003
, “
Crack Modeling of Asphaltic Mixtures Considering Heterogeneity of the Material
,”
Transp. Res. Rec.
,
1832
, pp.
113
120
.10.3141/1832-14
3.
Abbas
,
A.
,
Masad
,
E.
,
Papagiannakis
,
T.
, and
Shenoy
,
A.
,
2005
, “
Modeling of Asphalt Mastic Stiffness Using Discrete Elements and Micromechanics Analysis
,”
Int. J. Pavement Eng.
,
6
(
2
), pp.
137
146
.10.1080/10298430500159040
4.
Dai
,
Q.
,
Sadd
,
M. H.
, and
You
,
Z.
,
2006
, “
A Micromechanical Finite Element Model for Linear and Damage-Coupled Viscoelastic Behaviour of Asphalt Mixture
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
30
(
11
), pp.
1135
1158
.10.1002/nag.520
5.
Kim
,
Y.
,
Allen
,
D. H.
, and
Little
,
D. N.
,
2007
, “
Computational Constitutive Model for Predicting Nonlinear Viscoelastic Damage and Fracture Failure of Asphalt Concrete Mixtures
,”
Int. J. Geomech.
,
7
(
2
), pp.
102
110
.10.1061/(ASCE)1532-3641(2007)7:2(102)
6.
Aragão
,
F. T. S.
,
Kim
,
Y.
,
Lee
,
J.
, and
Allen
,
D. H.
,
2011
, “
Micromechanical Model for Heterogeneous Asphalt Concrete Mixtures Subjected to Fracture Failure
,”
J. Mater. Civ. Eng.
,
23
(
1
), pp.
30
38
.10.1061/(ASCE)MT.1943-5533.0000004
7.
Feng
,
Z.
,
Zhang
,
P.
,
Guddati
,
M. N.
,
Kim
,
Y. R.
, and
Little
,
D. N.
,
2008
, “
Virtual Testing Procedure for Cracking Performance Prediction of HMA
,”
Proceedings of the 6th RILEM International Conference on Cracking in Pavements
, Chicago, June 16–18, pp.
575
585
.
8.
Soares
,
R. F.
,
Kim
,
Y.
, and
Allen
,
D. H.
,
2008
, “
Multiscale Computational Modeling for Predicting Evolution of Damage in Asphaltic Pavements
,”
Proceedings of the 6th RILEM International Conference on Cracking in Pavements
, Chicago, June 16–18, pp.
599
608
.
9.
Lutif
,
J.
,
Souza
,
F. V.
,
Kim
,
Y.
,
Soares
,
J. B.
, and
Allen
,
D. H.
,
2010
, “
Multiscale Modeling to Predict the Mechanical Behavior of Asphalt Mixtures
,”
Transp. Res. Rec.
,
2181
, pp.
28
35
.10.3141/2181-04
10.
Souza
,
F. V.
,
2009
, “
Multiscale Modeling of Impact on Heterogeneous Viscoelastic Solids With Evolving Microcracks
,”
Ph.D. dissertation
,
University of Nebraska–Lincoln
,
Lincoln, NE
.
11.
Souza
,
F. V.
and
Allen
,
D. H.
,
2010
, “
Multiscale Modeling of Impact on Heterogeneous Viscoelastic Solids Containing Evolving Microcracks
,”
Int. J. Numer. Methods Eng.
,
82
(
4
), pp.
464
504
.10.1002/nme.2773
12.
Allen
,
D. H.
,
2001
, “
Homogenization Principles and Their Application to Continuum Damage Mechanics
,”
Compos. Sci. Technol.
,
61
, pp.
2223
2230
.10.1016/S0266-3538(01)00116-6
13.
Dugdale
,
D.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.10.1016/0022-5096(60)90013-2
14.
Barenblatt
,
G. I.
,
1962
, “
Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
15.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
Trans ASME, J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
16.
Tvergaard
,
V.
,
1990
, “
Effect of Fiber Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng.
,
125
(
2
), pp.
203
213
.10.1016/0921-5093(90)90170-8
17.
Geubelle
,
P. H.
and
Baylor
,
J. S.
,
1998
, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Composites, Part B
,
29
(
5
), pp.
589
602
.10.1016/S1359-8368(98)00013-4
18.
Ortiz
,
M.
and
Pandolfi
,
A.
,
1999
, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1267
1282
.10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
19.
Yoon
,
C.
and
Allen
,
D. H.
,
1999
, “
Damage Dependent Constitutive Behavior and Energy Release Rate for a Cohesive Zone in a Thermoviscoelastic Solid
,”
Int. J. Fract.
,
96
, pp.
55
74
.10.1023/A:1018601004565
20.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2009
, “
A Unified Potential-Based Cohesive Model of Mixed-Mode Fracture
,”
J. Mech. Phys. Solids
,
57
(
6
), pp.
891
908
.10.1016/j.jmps.2008.10.003
21.
Kim
,
Y.
,
Allen
,
D. H.
, and
Little
,
D. N.
,
2005
, “
Damage-Induced Modeling of Asphalt Mixtures Through Computational Micromechanics and Cohesive Zone Fracture
,”
J. Mater. Civ. Eng.
,
17
(
5
), pp.
477
484
.10.1061/(ASCE)0899-1561(2005)17:5(477)
22.
Nemat-Nasser
,
S.
and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
North Holland
,
New York
.
23.
Kouznetsova
,
V. G.
,
2002
, “
Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials
,”
Ph.D. dissertation
,
Technische Universiteit Eindhoven
,
Eindhoven, The Netherlands
.
24.
Kim
,
Y.
,
Souza
,
F. V.
, and
Teixeira
,
J. L.
,
2013
, “
A Two-Way Coupled Multiscale Model for Predicting Damage-Associated Performance of Asphaltic Roadways
,”
Comput. Mech.
,
51
, pp. 187–201.10.1007/s00466-012-0716-8
25.
Kim
,
Y.
,
Little
,
D. N.
, and
Lytton
,
R. L.
,
2003
, “
Fatigue and Healing Characterization of Asphalt Mixtures
,”
J. Mater. Civ. Eng.
,
15
(
1
), pp.
75
83
.10.1061/(ASCE)0899-1561(2003)15:1(75)
26.
Cheng
,
D.
,
Little
,
D. N.
,
Lytton
,
R. L.
, and
Holste
,
J. C.
,
2003
, “
Moisture Damage Evaluation of Asphalt Mixtures by Considering Both Moisture Diffusion and Repeated-Load Conditions
,”
Transp. Res. Rec.
,
1832
, pp.
42
58
.10.3141/1832-06
You do not currently have access to this content.