Abstract

The tearing response of sheets of nonwoven fiber material is investigated. It addresses the question on how notch length and notch geometry is related to the tearing strength and tearing processes. The system considered consists of elastic-brittle fibers connected by strong interfiber bonds. Fiber fracture is the only failure mechanism. For a random fiber orientation case, deformation of the unnotched specimen occurs by long-range fiber chains connecting the load inducing boundaries, and failure is by tearing the cross section. The strength of the notched random fiber sheets is well described by a net section criterion, independent of the notch geometry. For a fiber orientation with symmetry relative to the loading direction, tensile loading is transferred by formation of the X-shaped fiber chains centered in the specimen. The subsequent failure occurs along the fiber chain by shear. Thus, the tearing strength is independent of the notch depth in double-edge notched and single-edge notched specimens, when the presence of shallow notch does not disrupt the force chains in the model. As the notch disturbs the fiber chains, alternative shear failure path forms near the notch tip, leading to a dependence of failure strength on the notch geometry. Then, the failure strength of notched nonwoven networks is described by a shear strength and a notch geometry term.

References

1.
Ridruejo
,
A.
,
González
,
C.
, and
Llorca
,
J.
,
2012
, “
A Constitutive Model for the In-Plane Mechanical Behavior of Nonwoven Fabrics
,”
Int. J. Solids Struct.
,
49
(
17
), pp.
2215
2229
. 10.1016/j.ijsolstr.2012.04.014
2.
Silberstein
,
M. N.
,
Pai
,
C.-L.
,
Rutledge
,
G. C.
, and
Boyce
,
M. C.
,
2012
, “
Elastic-Pplastic Behavior of Non-Woven Fibrous Mats
,”
J. Mech. Phys. Solids
,
60
(
2
), pp.
295
318
. 10.1016/j.jmps.2011.10.007
3.
Raina
,
A.
, and
Linder
,
C.
,
2014
, “
A Homogenization Approach for Nonwoven Materials Based on Fiber Undulations and Reorientation
,”
J. Mech. Phys. Solids
,
65
, pp.
12
34
. 10.1016/j.jmps.2013.12.011
4.
Raina
,
A.
, and
Linder
,
C.
,
2015
, “
A Micromechanical Model With Strong Discontinuities for Failure in Nonwovens at Finite Deformations
,”
Int. J. Solids Struct.
,
75–76
, pp.
247
259
. 10.1016/j.ijsolstr.2015.08.018
5.
Ridruejo
,
A.
,
González
,
C.
, and
Llorca
,
J.
,
2010
, “
Damage Micromechanisms and Notch Sensitivity of Glass-Fiber Non-Woven Felts: An Experimental and Numerical Study
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1628
1645
. 10.1016/j.jmps.2010.07.005
6.
Åslund
,
P. E.
, and
Isaksson
,
P.
,
2011
, “
A Note on the Nonlinear Mechanical Behavior of Planar Random Network Structures Subjected to In-Plane Compression
,”
J. Compos. Mater.
,
45
(
25
), pp.
2697
2703
. 10.1177/0021998311422749
7.
Kulachenko
,
A.
, and
Uesaka
,
T.
,
2012
, “
Direct Simulations of Fiber Network Deformation and Failure
,”
Mech. Mater.
,
51
, pp.
1
14
. 10.1016/j.mechmat.2012.03.010
8.
Chen
,
Y.
,
Ridruejo
,
A.
,
González
,
C.
,
Llorca
,
J.
, and
Siegmund
,
T.
,
2016
, “
Notch Effect in Failure of Fiberglass Non-Woven Materials
,”
Int. J. Solids Struct.
,
96
, pp.
254
264
. 10.1016/j.ijsolstr.2016.06.004
9.
Negi
,
V.
, and
Picu
,
R. C.
,
2019
, “
Mechanical Behavior of Nonwoven Non-Crosslinked Fibrous Mats With Adhesion and Friction
,”
Soft Matter
,
15
(
29
), pp.
5951
5964
. 10.1039/C9SM00658C
10.
Chen
,
N.
, and
Silberstein
,
M. N.
,
2019
, “
A Micromechanics-Based Damage Model for Non-Woven Fiber Networks
,”
Int. J. Solids Struct.
,
160
, pp.
18
31
. 10.1016/j.ijsolstr.2018.10.009
11.
Ridruejo
,
A.
,
González
,
C.
, and
Llorca
,
J.
,
2011
, “
Micromechanisms of Deformation and Fracture of Polypropylene Nonwoven Fabrics
,”
Int. J. Solids Struct.
,
48
(
1
), pp.
153
162
. 10.1016/j.ijsolstr.2010.09.013
12.
Koh
,
C. T.
,
Strange
,
D.
,
Tonsomboon
,
K.
, and
Oyen
,
M.
,
2013
, “
Failure Mechanisms in Fibrous Scaffolds
,”
Acta Biomater.
,
9
(
7
), pp.
7326
7334
. 10.1016/j.actbio.2013.02.046
13.
Ridruejo
,
A.
,
Jubera
,
R.
,
González
,
C.
, and
Llorca
,
J.
,
2015
, “
Inverse Notch Sensitivity: Cracks Can Make Nonwoven Fabrics Stronger
,”
J. Mech. Phys. Solids
,
77
, pp.
61
69
. 10.1016/j.jmps.2015.01.004
14.
Martínez-Hergueta
,
F.
,
Ridruejo
,
A.
,
González
,
C.
, and
LLorca
,
J.
,
2015
, “
Deformation and Energy Dissipation Mechanisms of Needle-Punched Nonwoven Fabrics: A Multiscale Experimental Analysis
,”
Int. J. Solids Struct.
,
64
, pp.
120
131
. 10.1016/j.ijsolstr.2015.03.018
15.
Picu
,
R. C.
,
2011
, “
Mechanics of Random Fiber Networks: A Review
,”
Soft Matter
,
7
(
15
), pp.
6768
6785
. 10.1039/c1sm05022b
16.
Head
,
D.
,
Levine
,
A.
, and
MacKintosh
,
F.
,
2003
, “
Distinct Regimes of Elastic Response and Deformation Modes of Cross-Linked Cytoskeletal and Semiflexible Polymer Networks
,”
Phys. Rev. E
,
68
(
6
), p.
061907
. 10.1103/PhysRevE.68.061907
17.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F.
,
2005
, “
Mechanical Response of Semiflexible Networks to Localized Perturbations
,”
Phys. Rev. E
,
72
(
6
), p.
061914
. 10.1103/PhysRevE.72.061914
18.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F. C.
,
2003
, “
Deformation of Cross-Linked Semiflexible Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108102
. 10.1103/PhysRevLett.91.108102
19.
Hatami-Marbini
,
H.
, and
Picu
,
R. C.
,
2008
, “
Scaling of Nonaffine Deformation in Random Semiflexible Fiber Networks
,”
Phys. Rev. E
,
77
(
6
), p.
062103
. 10.1103/PhysRevE.77.062103
20.
Picu
,
C.
,
Ganghoffer
,
J. F.
,
Guazzelli
,
E.
,
Rammerstorfer
,
F. G.
,
Wall
,
W. A.
,
Schrefler
,
B.
, and
Serafini
,
P.
,
2020
,
Mechanics of Fibrous Materials and Applications
,
Springer International Publishing
,
Cham, Switzerland
.
21.
Stachewicz
,
U.
,
Peker
,
I.
,
Tu
,
W.
, and
Barber
,
A. H.
,
2011
, “
Stress Delocalization in Crack Tolerant Electrospun Nanofiber Networks
,”
ACS Appl. Mater. Interfaces
,
3
(
6
), pp.
1991
1996
. 10.1021/am2002444
22.
Koh
,
C. T.
, and
Oyen
,
M. L.
,
2012
, “
Branching Toughens Fibrous Networks
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
74
82
. 10.1016/j.jmbbm.2012.03.011
You do not currently have access to this content.