In this investigation, a nonlinear finite element method for the large deformation and rotation of cable problems is presented. This method is based on finite element absolute nodal coordinate formulation that guarantees the continuity of all displacement gradients and leads to a constant mass matrix. The classical cable theory is first reviewed and the assumptions used in this linear theory are defined in order to demonstrate the basic differences between the linear theory and the nonlinear finite element formulation proposed in this paper for cable applications. The elastic cable forces in the absolute nodal coordinate formulation are obtained using a general continuum mechanics approach that accounts for the effect of all geometric nonlinearities. It is shown in this investigation that the use of the general continuum mechanics approach leads to a simpler and more efficient formulation as compared to the use of the assumptions of the linear theory that employs a local finite element coordinate system. The results obtained using the absolute nodal coordinate formulation show a good agreement with the results obtained using the classical cable theory when linear cable problems are considered. In particular it is shown that the use of perturbation methods to linearize the finite element equations of motion leads to modal characteristics results that are in a good agreement with the linear theory. The results of this investigation obtained using explicit numerical integration also show the potential of the proposed finite element formulation in the nonlinear analysis of cables that experience large rotations and deformations. The generalization of the procedure presented in this paper to three-dimensional cable problems is demonstrated and the computer implementation in multibody algorithms is discussed.

1.
Rohrs
,
J. H.
,
1851
, “
On the Oscillations of a Suspension Cable
,”
Trans. Cambridge Philos. Soc.
,
9
, pp.
379
398
.
2.
Routh, E. J., 1955, Advanced Rigid Dynamics, Dover.
3.
Saxon
,
D. S.
, and
Cahn
,
A. S.
,
1953
, “
Modes of Vibration of a Suspended Chain
,”
Q. J. Mech. Appl. Math.
,
6
, pp.
273
285
.
4.
Irvine
,
H. M.
, and
Caughey
,
T. K.
,
1974
, “
The Linear Theory of Free Vibration of a Suspended Cable
,”
Proc. R. Soc. London, Ser. A
,
341
, pp.
299
315
.
5.
Irvine, H. M., 1981, Cable Structures, MIT Press.
6.
Soler
,
A. I.
,
1970
, “
Dynamic Response of Single Cables with Initial Sag
,”
J. Franklin Inst.
,
290
, pp.
377
387
.
7.
Carrier
,
G. F.
,
1945
, “
On the Non-Linear Vibration Problem of the Elastic String
,”
Q. J. Mech. Appl. Math.
,
3
, pp.
157
165
.
8.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1984
, “
Planar Non-Linear Free Vibrations of an Elastic Cable
,”
Int. J. Non-Linear Mech.
,
19
, pp.
39
52
.
9.
Perkins
,
N. C.
, and
Mote
,
C. D.
,
1987
, “
Three-Dimensional Vibration of Traveling Elastic Cables
,”
J. Sound Vib.
,
114
, pp.
325
340
.
10.
West
,
H. H.
,
Geschwindner
,
L. F.
, and
Suhoski
,
J. E.
,
1975
, “
Natural Vibrations of Suspension Cables
,”
J. Struct. Div. ASCE
101
, pp.
2277
2291
.
11.
Winget
,
J. M.
, and
Huston
,
R. L.
,
1976
, “
Cable Dynamics—A Finite Segment Approach
,”
Comput. Struct.
,
6
, pp.
475
480
.
12.
Huston, R. L., 1990, Multibody Dynamics, Butterworth-Heinemann.
13.
Kamman
,
J. W.
, and
Huston
,
R. L.
,
2001
, “
Multibody Dynamics Modeling of Variable Length Cable Systems
,”
Multibody Syst. Dyn.
,
5
, pp.
211
221
.
14.
Ablow
,
C. M.
, and
Schechter
,
S.
,
1983
, “
Numerical Simulation of Undersea Cable Dynamics
,”
Ocean Eng.
,
10
, pp.
443
457
.
15.
Behbahani-Nejad
,
M.
, and
Perkins
,
N. C.
,
1999
, “
Numerical Analysis of Nonlinear Wave Propagation in Elastic Submerged Cables
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
, pp.
116
125
.
16.
Tjavaras
,
A. A.
,
Zhu
,
Q.
,
Liu
,
Y.
,
Triantafyllou
,
M. S.
, and
Yue
,
D. K. P.
,
1998
, “
The Mechanics of Highly-Extensible Cables
,”
J. Sound Vib.
,
213
, pp.
709
737
.
17.
Henghold
,
W. M.
, and
Russell
,
J. J.
,
1976
, “
Equilibrium and Natural Frequencies of Cable Structures (A Nonlinear Finite Element Approach)
,”
Comput. Struct.
,
6
, pp.
267
271
.
18.
Gambhir
,
M. L.
, and
Batchelor
,
B. de V.
,
1978
, “
Parametric Study of Free Vibration of Sagged Cables
,”
Comput. Struct.
,
8
, pp.
641
648
.
19.
Ali
,
H. M.
, and
Abdel-Ghaffar
,
A. M.
,
1995
, “
Modeling the Nonlinear Seismic Behavior of Cable-Stayed Bridges with Passive Control Bearings
,”
Comput. Struct.
,
54
, pp.
461
492
.
20.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall.
21.
Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd edition, Cambridge University Press.
22.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
, pp.
565
576
.
23.
Meirovitch L., 1967, Analytical Methods in Vibrations, Macmillan.
24.
Irvine
,
H. M.
, and
Griffin
,
J. H.
,
1976
, “
On the Dynamic Response of a Suspended Cable
,”
International Journal of Earthquake Engineering and Structural Dynamics
,
4
, pp.
389
402
.
25.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements
,”
ASME J. Mech. Des.
,
123
, pp.
606
621
.
26.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, 3rd edition, John Wiley & Sons.
27.
Skop
,
R. A.
, and
Choo
,
Y.-I.
,
1971
, “
The Configuration of a Cable Towed in a Circular Path
,”
J. Aircr.
,
8
, pp.
856
862
.
28.
Russell
,
J. J.
, and
Anderson
,
W. J.
,
1977
, “
Equilibrium and Stability of a Circularly Towed Cable Subjected to Aerodynamic Drag
,”
J. Aircr.
,
14
, pp.
680
686
.
29.
Zhu
,
F.
, and
Rahn
,
C. D.
,
1998
, “
Stability Analysis of a Circularly Towed Cable-Body System
,”
J. Sound Vib.
,
217
, pp.
435
452
.
30.
Shampine, L., and Gordon, M., 1975, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, W.H. Freeman.
You do not currently have access to this content.