In two recent papers (Chen, J.-S., and Chen, K.-L., 2001, “The Role of Lagrangian Strain in the Dynamic Response of a Flexible Connecting Rod,” ASME Journal of Mechanical Design, 123, pp. 542–548; Chen, J.-S., and Huang, C.-L., 2001, “Dynamic Analysis of Flexible Slider-Crank Mechanisms With Nonlinear Finite Element Method,” Journal of Sound and Vibration, 246, pp. 389–402) we reported that previous researches of others on the dynamic response of a flexible connecting rod may have overestimated the deflections by ten folds when the crank rotates near the bending natural frequency of the connecting rod because terms of significant order of magnitude were ignored inadequately. While the findings in (Chen, J.-S., and Chen, K.-L., 2001, “The Role of Lagrangian Strain in the Dynamic Response of a Flexible Connecting Rod,” ASME Journal of Mechanical Design, 123, pp. 542–548; Chen, J.-S., and Huang, C.-L., 2001, “Dynamic Analysis of Flexible Slider-Crank Mechanisms With Nonlinear Finite Element Method,” Journal of Sound and Vibration, 246, pp. 389–402.) were obtained via numerical simulations, the present paper emphasizes the analytical approach with an aim to exploring the physical insights behind these numerical results. The equations of motion are first derived by applying Hamilton’s principle with all high order terms in the strain energy function being retained. After careful examination of the order of magnitude of each term, the coupled equations are simplified to a single one in terms of the transverse deflection, which turns out to be a Duffing equation under parametric and external excitations simultaneously. Closed-form approximations of the dynamic response are then derived by using multiple scale method. It is found that the combined effects of parametric and external excitations dominate the response when Ω is close to 0.5 and 1. Away from these two speed ranges, on the other hand, the response is dominated by the external excitation alone.

1.
Neubauer
,
A. H.
,
Cohen
,
R.
, and
Hall
,
A. S.
,
1966
, “
An Analytical Study of the Dynamics of an Elastic Linkage
,”
ASME J. Ind. Eng.
,
88
, pp.
311
317
.
2.
Badlani
,
M.
, and
Kleninhenz
,
W.
,
1979
, “
Dynamic Stability of Elastic Mechanism
,”
ASME J. Mech. Des.
,
101
, pp.
149
153
.
3.
Badlani
,
M.
, and
Midha
,
A.
,
1982
, “
Member Initial Curvature Effects on the Elastic Slider-Crank Mechanism Response
,”
ASME J. Mech. Des.
,
104
, pp.
159
167
.
4.
Badlani
,
M.
, and
Midha
,
A.
,
1983
, “
Effect of Internal Material Damping on the Dynamics of a Slider-Crank Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
452
459
.
5.
Tadjbakhsh
,
I. G.
,
1982
, “
Stability of Motion of Elastic Planar Linkages With Application to Slider Crank Mechanism
,”
ASME J. Mech. Des.
,
104
, pp.
698
703
.
6.
Tadjbakhsh
,
I. G.
, and
Younis
,
C. J.
,
1986
, “
Dynamic Stability of the Flexible Connecting Rod of a Slider Crank Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, pp.
487
496
.
7.
Zhu
,
Z. G.
, and
Chen
,
Y.
,
1983
, “
The Stability of the Motion of a Connecting Rod
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
637
640
.
8.
Bahgat
,
B. M.
, and
Willmert
,
K. D.
,
1976
, “
Finite Element Vibrational Analysis of Planar Mechanisms
,”
Mech. Mach. Theory
,
11
, pp.
47
71
.
9.
Midha
,
A.
,
Erdman
,
A. G.
, and
Frohrib
,
D. A.
,
1978
, “
Finite Element Approach to Mathematical Modeling of High Speed Elastic Linkages
,”
Mech. Mach. Theory
,
13
, pp.
603
618
.
10.
Sunada
,
W.
, and
Dubowsky
,
S.
,
1981
, “
The Application of Finite Element Methods to the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems
,”
ASME J. Mech. Des.
,
103
, pp.
643
651
.
11.
Yang
,
Z.
, and
Sadler
,
J. P.
,
1990
, “
Large-Displacement Finite Element Analysis of Flexible Linkages
,”
ASME J. Mech. Des.
,
112
, pp.
175
182
.
12.
Viscomi
,
B. V.
, and
Ayre
,
R. S.
,
1971
, “
Nonlinear Dynamic Response of Elastic Slider-Crank Mechanism
,”
ASME J. Eng. Ind.
,
93
, pp.
251
262
.
13.
Hsieh
,
S. R.
, and
Shaw
,
S. W.
,
1993
, “
Dynamic Stability and Nonlinear Resonance of a Flexible Connecting Rod: Continuous Parameter Model
,”
Nonlinear Dyn.
,
4
, pp.
573
603
.
14.
Hsieh
,
S. R.
, and
Shaw
,
S. W.
,
1994
, “
The Dynamic Stability and Nonlinear Resonance of a Flexible Connecting Rod: Single Mode Model
,”
J. Sound Vib.
,
170
, pp.
25
49
.
15.
Nath
,
P. K.
, and
Ghosh
,
A.
,
1980
, “
Kineto-Elastodynamic Analysis of Mechanisms by Finite Element Method
,”
Mech. Mach. Theory
,
15
, pp.
179
197
.
16.
Cleghorn
,
W. L.
,
Fenton
,
R. G.
, and
Tabarrok
,
B.
,
1981
, “
Finite Element Analysis of High-Speed Flexible Mechanisms
,”
Mech. Mach. Theory
,
16
, pp.
407
424
.
17.
Turcic
,
D. A.
, and
Midha
,
A.
,
1984
, “
Dynamic Analysis of Elastic Mechanism System. Part I: Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
106
, pp.
249
254
.
18.
Thompson
,
B. S.
, and
Sung
,
C. K.
,
1984
, “
A Variational Formulation for the Nonlinear Finite Element Analysis of Flexible Linkages: Theory, Implementation, and Experimental Results
,”
ASME J. Mech., Transm., Autom. Des.
,
106
, pp.
482
488
.
19.
Jasinski
,
P. W.
,
Lee
,
H. C.
, and
Sandor
,
G. N.
,
1970
, “
Stability and Steady-State Vibrations in a High Speed Slider-Crank Mechanism
,”
ASME J. Appl. Mech.
,
37
, pp.
1069
1076
.
20.
Jasinski
,
P. W.
,
Lee
,
H. C.
, and
Sandor
,
G. N.
,
1971
, “
Vibrations of Elastic Connecting Rod of a High Speed Slider-Crank Mechanism
,”
ASME J. Ind. Eng.
,
93
, pp.
636
644
.
21.
Chu
,
S. C.
, and
Pan
,
K. C.
,
1975
, “
Dynamic Response of a High Speed Slider-Crank Mechanism With an Elastic Connecting Rod
,”
ASME J. Ind. Eng.
,
97
, pp.
542
550
.
22.
Fung
,
R.-F.
, and
Chen
,
H.-H.
,
1997
, “
Steady-State Response of the Flexible Connecting Rod of a Slider-Crank Mechanism With Time-Dependent Boundary Condition
,”
J. Sound Vib.
,
199
, pp.
237
251
.
23.
Chen
,
J.-S.
, and
Chen
,
K.-L.
,
2001
, “
The Role of Lagrangian Strain in the Dynamic Response of a Flexible Connecting Rod
,”
ASME J. Mech. Des.
,
123
, pp.
542
548
.
24.
Chen
,
J.-S.
, and
Huang
,
C.-L.
,
2001
, “
Dynamic Analysis of Flexible Slider-Crank Mechanisms With Nonlinear Finite Element Method
,”
J. Sound Vib.
,
246
, pp.
389
402
.
25.
Fung
,
R.-F.
,
Hwang
,
C.-C.
, and
Chen
,
W.-P.
,
1997
, “
On the Non-Linear Dynamic Modeling of the Flexible Connecting Rod of a Slider-Crank Mechanism With Input Torque
,”
J. Sound Vib.
,
203
, pp.
523
532
.
26.
Huang, C.-L., 2000, “Dynamic Analysis of Flexible Slider-Crank Mechanisms With Nonlinear Finite Element Method,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan.
27.
Nayfeh
,
A. H.
, and
Sanchez
,
N. E.
,
1989
, “
Bifurcations in a Forced Softening Duffing Oscillator
,”
Int. J. Non-Linear Mech.
,
24
, pp.
483
497
.
28.
Nayfeh, A. H., and Balachandran, B., 1994, Applied Nonlinear Dynamics, John Wiley & Sons, Inc., New York.
29.
Chen
,
J.-S.
, and
Chian
,
C.-H.
,
2001
, “
Effects of Crank Length on the Dynamics Behavior of a Flexible Connecting Rod
,”
ASME J. Vibr. Acoust.
,
123
, pp.
318
323
.
You do not currently have access to this content.