This study presents a new nonlinear dynamic model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur gear pair is coupled with linear finite element models of shafts carrying them, and with discrete models of bearings and disks. The nonlinear elasticity term resulting from backlash is expressed by a describing function, and a method developed in previous studies to determine multi harmonic responses of nonlinear multi-degree-of-freedom systems is employed for the solution. The excitations considered in the model are external static torque and internal excitation caused by mesh stiffness variation, gear errors and gear tooth profile modifications. The model suggested and the solution method presented combine the versatility of modeling a shaft-bearing-disk system that can have any configuration without a limitation to the total degree of freedom, with the accuracy of a nonlinear gear mesh interface model that allows to predict jumps and double solutions in frequency response. Thus any single stage gear mesh configuration can be modeled easily and accurately. With the model developed it is possible to calculate dynamic gear loads, dynamic bearing forces, dynamic transmission error and bearing displacements. Theoretical results obtained by using the method suggested are compared with the experimental data available in literature, as well as with the theoretical values calculated by employing a previously developed nonlinear single degree of freedom model.

1.
O¨zgu¨ven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Mathematical Models Used in Gear Dynamics—A Review
,”
J. Sound Vib.
,
123
, pp.
383
411
.
2.
Blankenship, G. W., and Singh, R., 1992, “A Comparative Study of Selected Gear Mesh Interface Dynamic Models,” ASME Proceedings of the 6th International Power Transmission and Gearing Conference, Phoenix, pp. 137–146.
3.
Velex, P., 1993, “Mode´lisation du Comportement Dynamiques des Transmissions par Engrenages,” Comportement Dynamique et Acoustique des Transmissions par Engrenages, Chapter 2, CETIM, pp. 39–35.
4.
Seireg, A., 1966, “Whirling of Shafts in Geared System,” American Society of Mechanical Engineers Paper 66-WA/MD-6.
5.
Johnson
,
D. C.
,
1962
, “
Modes and Frequencies of Shafts Coupled by Straight Spur Gears
,”
J. Mech. Eng. Sci.
,
4
, pp.
241
250
.
6.
Iiada
,
H.
,
Tamura
,
A.
,
Kikuch
,
K.
, and
Agata
,
H.
,
1980
, “
Coupled Torsional-Flexural Vibration of a Shaft in a Geared System of Rotors (1st Report)
,”
Bull. JSME
,
23
, pp.
211
2117
.
7.
Iiada, H., and Tamura, A., 1984, “Coupled Torsional-Flexural Vibration of a Shaft in a Geared System,” Proceedings of the Conference on Vibration in Rotating Machinery, Institution of Mechanical Engineers, pp. 67–72.
8.
Iiada
,
H.
,
Tamura
,
A.
, and
Oonishi
,
M.
,
1985
, “
Coupled Dynamic Characteristics of a Counter Shaft in a Geared Train System
,”
Bull. JSME
,
28
, pp.
2694
2698
.
9.
Iiada
,
H.
,
Tamura
,
A.
, and
Yamamoto
,
H.
,
1986
, “
Dynamic Characteristics of Gear Train System with Softly Supported Shafts
,”
Bull. JSME
,
29
, pp.
1811
1816
.
10.
Iwatsubo
,
T.
,
Arii
,
S.
, and
Kawai
,
R.
,
1984
, “
Coupled Lateral-Torsional Vibration of Rotor System Trained by Gear (1st Analysis by Transfer Matrix Method)
,”
Bull. JSME
,
27
, pp.
271
277
.
11.
Neriya, S. V., Bhat, R. B., and Sankar, T. S., 1985, “Vibration of a Geared Train of Rotors with Torsional-Flexural Coupling,” American Society of Mechanical Engineers, 85-DET-124.
12.
Neriya
,
S. V.
,
Bhat
,
R. B.
, and
Sankar
,
T. S.
,
1985
, “
Coupled Torsional-Flexural Vibration of a Geared Shaft System by Using finite Element Analysis
,”
Shock Vib. Bulletin
,
55
, pp.
13
25
.
13.
O¨zgu¨ven
,
H. N.
, and
O¨zkan
,
Z. L.
,
1984
, “
Whirl Speeds and Unbalance Response of Multibearing Rotors Using Finite Elements
,”
ASME J. Vibr. Acoust. Stress, Reliab. Des.
,
106
, pp.
72
79
.
14.
Kahraman
,
A.
,
O¨zgu¨ven
,
H. N.
,
Houser
,
D. R.
, and
Zakrajsek
,
J. J.
,
1992
, “
Dynamic Analysis of Geared Rotors by Finite Elements
,”
ASME J. Mech. Des.
,
114
, pp.
507
514
.
15.
Velex
,
P.
, and
Mataar
,
M.
,
1996
, “
A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behavior
,”
J. Sound Vib.
,
191
, pp.
629
660
.
16.
Lin
,
H. H.
,
Towsend
,
D. P.
, and
Oswald
,
F. B.
,
1993
, “
Prediction of Gear Dynamics Using Fast Fourier Transform of Static Transmission Error
,”
Mech. Struct. Mach.
,
21
(
2
), pp.
237
260
.
17.
Lin
,
H. H.
,
Towsend
,
F. B.
, and
Towsend
,
D. P.
,
1994
, “
Dynamic Loading of Spur Gears with Linear or Parabolic Tooth Profile Modifications
,”
Mech. Mach. Theory
,
29
(
8
), pp.
1115
1129
.
18.
Blankenship
,
G. W.
, and
Singh
,
R.
,
1995
, “
A New Gear Mesh Interface Dynamic Model to Predict Multi-Dimensional Force Coupling and Excitation
,”
Mech. Mach. Theory
,
30
(
1
), pp.
43
57
.
19.
Blankenship
,
G. W.
, and
Singh
,
R.
,
1995
, “
Dynamic Force Transmissibility in Helical Gear Pairs
,”
Mech. Mach. Theory
,
30
(
3
), pp.
323
339
.
20.
Vinayak
,
H.
,
Singh
,
R.
, and
Padmanabhan
,
C.
,
1995
, “
Linear Dynamic Analysis of Multi-Mesh Transmissions Containing External Rigid Gears
,”
J. Sound Vib.
,
185
(
1
), pp.
1
32
.
21.
Vinayak
,
H.
, and
Singh
,
R.
,
1998
, “
Multi-Body Dynamics and Modal Analysis of Compliant Gear Bodies
,”
J. Sound Vib.
,
210
(
2
), pp.
171
214
.
22.
Kahraman
,
A.
,
1994
, “
Dynamic Analysis of a Multi-Mesh Helical Gear Train
,”
ASME J. Mech. Des.
,
116
, pp.
706
712
.
23.
Vinayak, H., and Singh, R., 1996, “Linear Dynamic Analysis of Multi-Mesh Transmissions Containing External, Compliant Gears,” ASME Proceedings of the 7th International Power Transmission and Gearing Conference, San Diego, pp. 535–541.
24.
Lim, T. C., and Houser, D. R., 1997, “Dynamic Analysis of Layshaft Gears in Automotive Transmission,” Proceedings of SAE Noise and Vibration Conference, pp. 739–749.
25.
Lim
,
T. C.
, and
Li
,
J.
,
1999
, “
Dynamic Analysis of Multi-Mesh Counter-Shaft Transmission
,”
J. Sound Vib.
,
219
(
5
), pp.
905
919
.
26.
Raclot
,
J. P.
, and
Velex
,
P.
,
1999
, “
Simulation of the Dynamic Behavior of Single and Multi-stage Geared System with Shape Deviations and Mounting Errors by Using Spectral Method
,”
J. Sound Vib.
,
220
(
5
), pp.
861
903
.
27.
Munro, R. G., 1962, “Dynamic Behavior of Spur Gears,” Ph.D. Dissertation, Cambridge University.
28.
Kubo
,
A.
,
Yamada
,
K.
,
Aida
,
T.
, and
Sato
,
S.
,
1972
, “
Research on Ultra High Speed Gear Devices (Reports 1–3)
,”
Trans. Jpn. Soc. Mech. Eng.
,
38
, pp.
2692
2715
.
29.
Baud
,
S.
, and
Velex
,
P.
,
2002
, “
Static and Dynamic Tooth Loading in Spur and Helical Geared Systems—Experiments and Model Validation
,”
ASME J. Mech. Des.
,
124
, pp.
834
846
.
30.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
, pp.
217
226
.
31.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Nonlinear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.
32.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Nonlinear Dynamics of a Geared Rotor-Bearing System with Multiple Clearances
,”
J. Sound Vib.
,
144
(
3
), pp.
469
506
.
33.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-Varying Mesh Stiffness and Clearance Nonlinearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.
34.
O¨zgu¨ven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error
,”
J. Sound Vib.
,
125
(
1
), pp.
71
83
.
35.
O¨zgu¨ven
,
H. N.
,
1991
, “
A Nonlinear Mathematical Model for the Dynamic Analysis of Spur Gears Including Shaft and Bearing Dynamics
,”
J. Sound Vib.
,
145
(
2
), pp.
239
260
.
36.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1994
, “
Steady State Force Response of a Mechanical Oscillator with Combined Parametric Excitation and Clearance Type Nonlinearity
,”
J. Sound Vib.
,
185
, pp.
734
765
.
37.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1996
, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System with Clearance
,”
J. Sound Vib.
,
194
, pp.
317
335
.
38.
Budak, E., and O¨zgu¨ven, H. N., 1990, “A Method for Harmonic Reponses of Structures with Symmetrical Nonlinearities,” Proceedings of the 15th International Seminar on Modal Analysis and Structural Dynamics, Leuven, Belgium, Vol. 2, pp. 901–915.
39.
Budak
,
E.
, and
O¨zgu¨ven
,
H. N.
,
1993
, “
Iterative Receptance Method for Determining Harmonic Response of Structures with Symmetrical Nonlinearities
,”
Mech. Syst. Signal Process.
,
7
(
1
), pp.
75
87
.
40.
Tanrikulu
,
O¨.
,
Kuran
,
B.
,
O¨zgu¨ven
,
H. N.
, and
I˙mregu¨n
,
M.
,
1993
, “
Forced Harmonic Response Analysis of Nonlinear Structures Using Describing Functions
,”
American Institute of Aeronautics and Astronautics
,
31
(
7
), pp.
1313
1320
.
41.
Houser, D. R., 1990, “Gear Noise Sources and Their Prediction by Using Mathematical Models,” SAE Gear Design, Manufacturing and Inspection Manual, Chap. 16, pp. 213–283.
42.
Maliha, R., 1994, “Nonlinear Dynamic Analysis of Geared Rotors to Internal Excitation by Using Describing Functions and Finite Elements Methods,” Ph.D. Dissertation, Middle East Technical University, Ankara, Turkey.
43.
Royston
,
T. J.
, and
Singh
,
R.
,
1996
, “
Periodic Response of Mechanical Systems with Local Nolinearities Using an Enhanced Galerkin Technique
,”
J. Sound Vib.
,
194
(
2
), pp.
243
263
.
44.
Cipra
,
R. J.
, and
Uicker
,
J. J.
,
1981
, “
On the Dynamic Simulation of Large Non-linear Systems, Part 1: An Overview of the Simulation Technique Substructuring and Frequency Domain Considerations
,”
ASME J. Mech. Des.
,
103
, pp.
849
856
.
45.
Cipra
,
R. J.
, and
Uicker
,
J. J.
,
1981
, “
On the Dynamic Simulation of Large Non-linear Systems, Part 2: The Time Integration and Time Response Loop
,”
ASME J. Mech. Des.
,
103
, pp.
857
865
.
46.
Ren
,
Y.
, and
Beards
,
C. F.
,
1994
, “
A New Receptance Based Perturbative Multi-Harmonic Balance Method for the Calculation of the Steady State Response of Nonlinear Systems
,”
J. Sound Vib.
,
172
(
5
), pp.
593
604
.
47.
O¨zgu¨ven
,
H. N.
,
1987
, “
A New Method for Harmonic Response of Nonproportionally Damped Systems Using Undamped Modal Data
,”
J. Sound Vib.
,
117
, pp.
313
338
.
You do not currently have access to this content.