Abstract

This paper uses the exponential defined on a Clifford algebra of planar projective space to show that the “standard-form” design equations used for planar linkage synthesis are obtained directly from the relative kinematics equations of the chain. The relative kinematics equations of a serial chain appear in the matrix exponential formulation of the kinematics equations for a robot. We show that formulating these same equations using a Clifford algebra yields design equations that include the joint variables in a way that is convenient for algebraic manipulation. The result is a single formulation that yields the design equations for planar 2R dyads, 3R triads, and nR single degree-of-freedom coupled serial chains and facilitates the algebraic solution of these equations including the inverse kinematics of the chain. These results link the basic equations of planar linkage design to standard techniques in robotics.

1.
Craig
,
J. J.
, 1989,
Introduction to Robotics, Mechanics and Control
,
Addison Wesley
, Reading, MA.
2.
Tsai
,
L.-W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Interscience
, New York.
3.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1984,
Advanced Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
, Englewood Cliffs, NJ, Vol.
2
.
4.
Lin
,
C.-S.
, and
Erdman
,
A. G.
, 1987, “
Dimensional Synthesis of Planar Triads for Six Positions
,”
Mech. Mach. Theory
0094-114X,
22
, pp.
411
419
.
5.
Chase
,
T. R.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
, 1987, “
Triad Synthesis for up to 5 Design Positions with Applications to the Design of Arbitrary Planar Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
4
), pp.
426
434
.
6.
Subbian
,
T.
, and
Flugrad
,
D. R.
, 1994, “
6 and 7 Position Triad Synthesis using Continuation Methods
,”
ASME J. Mech. Des.
1050-0472,
116
(
2
), pp.
660
665
.
7.
Krovi
,
V.
,
Ananthasuresh
,
G. K.
, and
Kumar
,
V.
, 2002, “
Kinematic and Kinetostatic Synthesis of Planar Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
124
(
2
), pp.
301
312
.
8.
Balli
,
S. S.
, and
Chand
,
S.
, 2004, “
Synthesis of a Five-Bar Mechanism of Variable Topology Type with Transmission Angle Control
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
128
134
.
9.
Holte
,
J. E.
,
Chase
,
T. R.
, and
Erdman
,
A. G.
, 2000, “
Mixed Exact-Approximate Position Synthesis of Planar Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
122
(
3
), pp.
278
286
.
10.
Mavroidis
,
C.
,
Lee
,
E.
, and
Alam
,
M.
, 2001, “
A New Polynomial Solution to the Geometric Design Problem of Spatial RR Robot Manipulators Using the Denavit-Hartenberg Parameters
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
58
67
.
11.
Lee
,
E.
, and
Mavroidis
,
D.
, 2002, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
652
661
.
12.
Perez
,
A.
, 2003, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,” Ph.D. dissertation, Department of Mechanical and Aerospace Engineering, University of California, Irvine.
13.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North Holland Press
, New York.
14.
DeSa
,
S.
, and
Roth
,
B.
, 1981, “
Kinematic Mappings. Part2: Rational Algebraic Motions in the Plane
,”
ASME J. Mech. Des.
1050-0472,
103
, pp.
712
717
.
15.
Ravani
,
B.
, and
Roth
,
B.
, 1983, “
Motion Synthesis Using Kinematic Mapping
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
3
), pp.
460
467
.
16.
Larochelle
,
P.
, and
McCarthy
,
J. M.
, 1995, “
Designing Planar Mechanisms using a Bi-invariant Quaternion Metric
,”
ASME J. Mech. Des.
1050-0472,
117
(
4
), pp.
646
651
.
17.
Murray
,
A.
,
Pierrot
,
F.
,
Dauchez
,
P.
, and
McCarthy
,
J.
, 1996, “
On the Design of Parallel Manipulators for a Prescribed Workspace: a Planar Quaternion Approach
,”
5th International Symposium on Advances in Robot Kinematics
, June.
18.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT Press
, Cambridge, MA.
19.
Murray
,
R. M.
,
Sastry
,
S. S.
, and
Li
,
Z.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press, Inc.
, Boca Raton, FL, p.
480
.
20.
Gupta
,
K. C.
, 1986, “
Kinematic analysis of manipulators using the zero reference position description
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
5
13
.
21.
McCarthy
,
J. M.
, 1993, “
Dual Quaternions and the Pole Triangle
,”
Modern Kinematics. Developments in the Last 40Years
,
Arthur G.
Erdman
, Ed.,
Wiley
, New York.
22.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanisms Design
,
Wiley
, New York.
23.
Burmester
,
L.
, 1886,
Lehrbuch der Kinematik
,
Verlag Von Arthur Felix
, Leipzig.
24.
Hartenberg
,
R.
, and
Denavit
,
J.
, 1964,
Kinematic Synthesis of Linkages
,
McGraw-Hill
, New York.
25.
Lin
,
C.-S.
, and
Jia
,
B.-P.
, 1992, “
Use of Resultant in the Dimensional Synthesis of Linkage Components: Motion Generation with Prescribed Timing
,”
Proceedings of the 1992 ASME Design Technical Conferences
, DE-Vol.
46
, pp.
489
496
.
26.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2004, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
425
435
.
27.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag
, New York.
You do not currently have access to this content.