Abstract

Multicriteria decision support methods are common in engineering design. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. It has long been known that a weighted sum, when used for multicriteria optimization, may fail to locate all points on a nonconvex Pareto frontier. More recent results from the optimization literature relate the curvature of an objective function to its ability to capture Pareto points, but do not consider the significance of the objective function parameters in choosing one Pareto point over another. A parametrized family of aggregations appropriate for engineering design is shown to model decisions capturing all possible trade-offs, and therefore can direct the solution to any Pareto optimum. This paper gives a mathematical and theoretical interpretation of the parameters of this family of aggregations as defining a degree of compensation among criteria as well as a measure of their relative importance. The inability to reach all Pareto optima is shown to be surmounted by this consideration of degree of compensation as an additional parameter of the decision. Additionally, the direct specification of importance weights is common to many decision methods. The choice of a single point from a Pareto frontier by specifying importance weights alone is shown to depend on the degree of compensation implicit in the aggregation. Thus both the degree of compensation and weights must be considered to capture all potentially acceptable decisions. A simple truss design example is used here to illustrate the concepts.

1.
Hauser
,
J.
and
Clausing
,
D.
, 1988, “
The House of Quality
,”
Harvard Bus. Rev.
0017-8012,
66
(
3
), pp.
63
73
.
2.
Saaty
,
T. L.
, 1980,
The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation
.
McGraw-Hill
, New York.
3.
Koski
,
J.
1985, “
Defectiveness of Weighting Method in Multicriterion Optimization of Structures
,”
Commun. Appl. Numer. Methods
0748-8025,
1
(
6
) pp.
333
337
.
4.
Messac
,
A.
, 1996, “
Physical Programming: Effective Optimization for Computational Design
,”
AIAA J.
0001-1452,
34
(
1
), pp.
149
158
.
5.
Athan
,
T. W.
, and
Papalambros
P. Y.
, 1996, “
A note on weighted criteria methods for compromise solutions in multi-objective optimization
,”
Eng. Optimiz.
0305-215X,
27
, pp.
155
176
.
6.
Messac
,
A.
,
Melachrinoudis
,
E.
, and
Sukam
,
C. P.
, 2000, “
Aggregate Objective Functions and Pareto Frontiers: Required Relationships and Practical Implications
,”
Optim. Eng.
1389-4420,
1
(
2
), pp.
171
188
.
7.
Messac
,
A.
,
Sundararaj
,
G. J.
,
Tappeta
,
R.
, and
Renaud
,
J. E.
, 2000,
Ability of Objective Functions to Generate Points on Non-Convex Pareto Frontiers
,”
AIAA J.
0001-1452,
38
(
6
), pp.
1084
1091
8.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2001, “
Required Relationship Between Objective Function and Pareto Frontier Orders: Practical Implications
,”
AIAA J.
0001-1452,
39
(
11
), pp.
2168
2174
,
9.
Scott
,
M. J.
, 1999,
Formalizing Negotiation in Engineering Design
, Ph.D. thesis, California Institute of Technology, Pasadena, CA.
10.
Tribus
,
M.
, 1969,
Rational Descriptions, Decisions, and Designs
,
Pergamon Press
, New York.
11.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1991, “
Trade-Off Strategies in Engineering Design
,”
Res. Eng. Des.
0934-9839,
3
(
2
), pp.
87
104
,
12.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 1998, “
Aggregation Functions for Engineering Design Trade-offs
,”
Fuzzy Sets Syst.
0165-0114,
99
(
3
), pp.
253
264
,
13.
Wood
,
K. L.
, and
Antonsson
,
E. K.
, 1989, “
Computations With Imprecise Parameters in Engineering Design: Background and Theory
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
4
), pp.
616
625
.
14.
Pareto
,
V.
, 1971,
Manual of Political Economy
,
A. S.
Schwier
and
A. N.
Page
, eds.,
Augustus M.
Kelley
, New York, (translated by
Ann S.
Schwier
from the 1927 French Edition of
Manuale di economia politica
, 1906).
15.
Chen
,
W.
,
Wiecek
,
M.
, and
Zhang
,
J.
, 1999, “
Quality Utility: A compromise Programming approach to robust design
,”
J. Mech. Des.
1050-0472,
121
(
2
), pp.
179
187
.
16.
Shan
,
S.
, and
Wang
,
G. G.
, 2005, “
An Efficient Pareto Set Identification Approach for Multi-Objective Optimization on Black-Box Functions
,
J. Mech. Des.
1050-0472 (to appear).
17.
Hernandez
,
G.
,
Simpson
,
T. W.
,
Allen
,
J. K.
,
Bascaran
,
E.
,
Avila
,
L. F.
, and
Salinas
,
F.
, 2001, “
Robust Design of Families of Products with Production Modeling and Evaluation
,”
J. Mech. Des.
1050-0472,
123
(
2
), pp.
183
190
.
18.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytic Target Cascading in Automotive Vehicle Design
,”
J. Mech. Des.
1050-0472,
125
(
3
), pp.
481
489
.
19.
Charles D.
McAllister
and
Simpson
,
T. W.
, 2003, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
J. Mech. Des.
1050-0472,
125
(
1
), pp.
124
130
.
20.
See
,
T.-K.
,
Gurnani
,
A.
, and
Lewis
,
K.
2004, “
Multiattribute Decision Making Using Hypothetical Equivalents and Inequivalents
,”
ASME J. Mech. Des.
1050-0472
126
(
6
), pp.
950
958
.
21.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
J. Mech. Des.
1050-0472,
125
(
3
), pp.
490
497
.
22.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
J. Mech. Des.
1050-0472 (to appear).
23.
Wan
,
J.
, and
Krishnamurty
,
S.
, 2001, “
Learning-Based Preference Modeling in Engineering Design Decision-Making
,”
J. Mech. Des.
1050-0472,
123
(
2
), pp.
191
198
.
24.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
, 2001, “
Interactive Multiobjective Optimization Design Strategy for Decision Based Design
,”
J. Mech. Des.
1050-0472,
123
(
2
), pp.
205
215
.
25.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2003, “
An Information-Theoretic Entropy metric for Assessing Multi-Objective Optimization Solution Set Quality
.
J. Mech. Des.
1050-0472,
125
(
4
), pp.
655
663
.
26.
Maddulapalli
,
K.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2005, “
Interactive Product Design Selection With an Implicit Value Function
,”
J. Mech. Des.
1050-0472 (to appear).
27.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
, 2004, “
A Framework for Flexible Systems and its Implementation in Multiattribute Decision Making
,”
J. Mech. Des.
1050-0472,
126
(
3
), pp.
412
419
.
28.
Wood
,
W. H.
, and
Agogino
,
A. M.
, 2005, “
Decision-Based Conceptual Design: Modeling and Navigating Heterogeneous Design Spaces
,”
ASME J. Mech. Des.
1050-0472
127
(
1
), pp.
2
11
.
29.
Maarten
,
P. M. M.
,
Franssen
,
M. P. M.
, and
Bucciarelli
,
L. L.
, 2004, “
On Rationality in Engineering Design
,”
ASME J. Mech. Des.
1050-0472
126
(
6
), pp.
945
949
.
30.
Law
,
W. S.
, and
Antonsson
,
E. K.
, 1995, “
Hierarchical Imprecise Design with Weights
,”
Proc. of Fourth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE∕IFES’95)
IEEE
, New York, Vol.
1
, pp.
383
388
.
31.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 1998, “
Preliminary Vehicle Structure Design: An Industrial Application of Imprecision in Engineering Design
,”
Proc. of 1998 ASME Design Engineering Technical Conferences
,
ASME
, New York.
32.
Otto
,
K. N.
, 1992, “
A Formal Representational Theory for Engineering Design
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
33.
Keeney
,
R.
, and
Raiffa
,
H.
, 1976,
Decisions With Multiple Objectives: Preferences and Value Tradeoffs
,
Wiley
, New York.
34.
Wood
,
K. L.
,
Antonsson
,
E. K.
, and
Beck
,
J. L.
, 1990, “
Representing Imprecision in Engineering Design—Comparing Fuzzy and Probability Calculus
,”
Res. Eng. Des.
0934-9839,
1
(
3∕4
), pp.
187
203
,
35.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1993, “
The Method of Imprecision Compared to Utility Theory for Design Selection Problems
,”
Design Theory and Methodology—DTM ’93
,
ASME
, New York, pp.
167
173
.
36.
Dyckhoff
,
H.
and
Pedrycz
,
W.
, 1984, “
Generalized means as model of compensative connectives
,”
Fuzzy Sets Syst.
0165-0114,
14
, pp.
143
154
.
37.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 2000, “
Using Indifference Points in Engineering Decisions
,”
Proc. of 2000 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, New York, ASME Paper No. DETC2000∕DTM-14559.
You do not currently have access to this content.