The gear-teeth number synthesis of an automatic planetary transmission used in automobiles is formulated as a constrained optimization problem that is solved with the aid of an Estimation of Distribution Algorithm. The design parameters are the teeth number of each gear, the number of multiple planets and gear module, while the objective function is defined as the departure between the imposed and the actual transmission ratios, constrained by teeth-undercut avoidance, limiting the maximum overall diameter of the transmission and ensuring proper spacing of multiple planets. For the actual case of a 3+1 speed Ravigneaux planetary transmission, the design space of the problem is explored using a newly introduced hyperfunction visualization technique, and the effect of various constraints highlighted. Global optimum results are also presented.

1.
Chatterjee
,
G.
, and
Tsai
,
L. W.
, 1995, “
Enumeration of Epicyclic-Type Automatic Transmission Gear Trains
,”
SAE Trans.
0096-736X, J. of Passenger Cars,
103
, pp.
1415
1426
.
2.
Chatterjee
,
G.
, and
Tsai
,
L. W.
, 1996, “
Computer Aided Sketching of Epicyclic-Type Automatic Transmission Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
405
411
.
3.
Hsu
,
C.-H.
, and
Hsu
,
J.-J.
, 2000, “
Epicyclic Gear Trains for Automotive Automatic Transmissions
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
214D
, pp.
523
532
.
4.
Johnson
,
R. C.
, and
Towfig
,
K.
, 1967, “
Creative Design of Epicyclic Gear Trains Using Number Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
89
, pp.
309
314
.
5.
Lloyd
,
R. A.
, 1983, “
Triple Epicyclic Four-clutch Six-ratio Change Speed System
,”
Proc. Inst. Mech. Eng.
0020-3483,
197C
, pp.
127
140
.
6.
Love
,
P. P.
, 1936, “
Epicyclic Gearing
,”
Proc. Inst. Mech. Eng.
0020-3483,
134
, pp.
547
568
.
7.
Molian
,
S.
, 1971, “
Kinematics of Compound Differential Mechanisms
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
, pp.
733
739
.
8.
Ravigneaux
,
P.
, 1930, “
Théorie Nouvelle sur les Trains Épicycloïdaus et les Mouvements Relatifs
,”
La Technique Automobile et Aérienne
,
21
, pp.
97
106
.
9.
Yan
,
H.-S.
, and
Hsieh
,
L.-C.
, 1994, “
Conceptual Design of Gear Differentials for Automotive Vehicles
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
565
570
.
10.
Fogarasy
,
A. A.
, and
Smith
,
M. R.
, 1995, “
A New Simplified Approach to the Kinematic Analysis and Design of Epicyclic Gearboxes
,”
Proc. Inst. Mech. Eng., Part A
0957-6509, J. of Mechanical Engineering Science,
209C
, pp.
49
53
.
11.
Hsieh
,
H.-I.
, and
Tsai
,
L.-W.
, 1995, “
Kinematic Analysis of Epicyclic-Type Transmission Mechanisms Using the Concept of Fundamental Geared Entities
,”
Proceedings of the ASME-DETC 1995
, Vol.
1
, pp.
545
552
.
12.
Macmillan
,
R. H.
, 1949, “
Epicyclic Gear Trains
,”
The Engineer
,
25
, pp.
318
320
.
13.
Merritt
,
H. E.
, 1941, “
Epicyclic Gear Trains
,”
The Engineer
,
21
, pp.
190
215
.
14.
Wilson
,
W. G.
, 1932, “
Epicyclic Gearing
,”
Automob. Eng.
0005-1381,
26
, pp.
216
257
.
15.
Macmillan
,
R. H.
, 1961, “
Power Flow Loss in Differential Mechanisms
,”
J. Mech. Eng. Sci.
0022-2542,
3
, pp.
37
41
.
16.
Macmillan
,
R. H.
, 1965, “
Analytical Study of Systems for Bifurcated Power Transmission
,”
J. Mech. Eng. Sci.
0022-2542,
7
, pp.
40
47
.
17.
Pennestrì
,
E.
, and
Freudenstein
,
F.
, 1993, “
A Systematic Approach to Power-Flow and Static Force Analysis in Epicyclic Spur-Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
639
644
.
18.
Pennestrì
,
E.
, and
Valentini
,
P. P.
, 2003, “
A Review of Formulas for the Mechanical Efficiency Analysis of Two Degrees-of-Freedom Epicyclic Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
602
608
.
19.
Chong
,
T. H.
, and
Lee
,
J. S.
, 2000, “
Genetic Algorithm Based Design for Gear Trains
,”
Proceedings of the ASME-DETC 2000
.
20.
Cleghorn
,
W. L.
,
Fenton
,
R. G.
, and
Fu
,
J.-F.
, 1989, “
A General Method for Optimum Design of Gear Boxes Through Nonlinear Programming
,”
Proceedings of the ASME-DETC 1989
, Vol.
19-2
, pp.
153
160
.
21.
Deb
,
K.
, and
Jain
,
S.
, 2003, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
610
619
.
22.
Golinski
,
J.
, 1970, “
Optimal Synthesis Problem Solved by Means of Nonlinear Programming and Random Methods
,”
J. Mech.
0022-2569,
5
, pp.
285
309
.
23.
Sandgren
,
E.
, 1990, “
Nonlinear Integer and Discrete Programming in Mechanical Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
223
229
.
24.
Brewer
,
R. C.
, 1960, “
Synthesis of Epicyclic Gear Trains Using the Velocity Ratio Spectrum
,”
ASME J. Eng. Ind.
0022-0817,
82
, pp.
173
178
.
25.
Kim
,
S. S.
, and
Newcombe
,
W. R.
, 1979, “
Computer Aided Kinematic Design of Planetary Gear Trains
,”
Proceedings of the 5th World Congress on the Theory of Machines and Mechanisms
,
Montreal
, CA, pp.
148
152
.
26.
Pennestrì
,
E.
, 1992, “
Kinematic Synthesis of Ordinary and Epicyclic Gear Trains for a Prescribed Velocity Ratio
,”
Proceedings of the ASME-DETC 1992
, Vol.
44
, pp.
75
82
.
27.
Fitzgeorge
,
D.
, 1971, “
Synthesis of Single-ratio and Multi-ratio Epicyclic Gear Trains
,”
Proc. Inst. Mech. Eng.
0020-3483,
13
, pp.
404
415
.
28.
Pazak
,
A.
,
Chrobak
,
J.
, and
Klimo
,
V.
, 1984, “
Method of the Kinematic Synthesis of the Epicyclic Gear Trains
,”
International Symposium on Design and Synthesis
,
Tokyo
, Japan, pp.
307
310
.
29.
Sanger
,
D. J.
, 1972, “
Synthesis of Multiple-Speed Transmissions of the Planetary-Gear Type
,”
Proc. Inst. Mech. Eng.
0020-3483, J. of Mechanical Engineering Science,
14
, pp.
353
362
.
30.
Bagci
,
C.
, 1990, “
Efficient Methods for the Synthesis of Compound Planetary Differential Gear Trains for Multiple Speed Ratio Generation
,”
Gear Technol.
0743-6858,
7
, pp.
16
.
31.
McCue
,
J. J.
, and
Olson
,
D. G.
, 1990, “
Optimization of Complex Planetary Gear Trains
.”
Proceedings of the ASME-DETC 1990
, Vol.
26
, pp.
57
62
.
32.
Meng
,
C.-F.
,
Lu
,
X.-N.
,
Cha
,
J.-Z.
, and
Shi
,
Z.-C.
, 1990, “
Optimal Synthesis of Planetary Chain-link Compound Mechanisms
,”
Proceedings of the ASME-DETC 1990
, Vol.
26
, pp.
181
184
.
33.
Kahraman
,
A.
,
Ligata
,
H.
,
Kienzle
,
K.
, and
Zini
,
D. M.
, 2004, “
A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
1071
1081
.
34.
Houser
,
D. R.
,
Luscher
,
A.
, and
Regalado
,
I.
, 1999, “
The Multi-Objective Optimization of Non-standard Gears Including Robustness
,”
Proceedings of the 1999 AGMA Technical Conference
, Paper 99FTM16.
35.
Rogers
,
J. L.
, and
Bloebaum
,
C. L.
, 1994, “
Ordering Design Tasks Based on Coupling Strengths
,”
Proceedings of the Fifth Symposium of Multidisciplinary Analysis and Optimization
,
Panama City
, FL, pp.
708
717
.
36.
Lechner
,
G.
, and
Naunheimer
,
H.
, 1999,
Automotive Transmissions. Fundamentals. Selection, Design and Application
,
Springer
, New York.
37.
Hösl
,
A.
,
Post
,
J.
, and
Pfeiffer
,
F.
, 2002, “
Simulation of a Ravigneaux Planetary Gear of an Automatic Transmission
,”
VDI-Ber.
0083-5560,
1665
, pp.
491
506
.
38.
Prayoonrat
,
S.
, and
Wlaton
,
D.
, 1988, “
Practical Approach to Optimum Gear Train Design
,”
Comput.-Aided Des.
0010-4485,
20
, pp.
83
92
.
39.
Larranaga
,
P.
, and
Lozano
,
J. A.
, 2002,
Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation
,
Kluwer
, Dordrecht.
40.
Simionescu
,
P. A.
,
Beale
,
D.
, and
Dozier
,
G.
, 2004, “
Constrained Optimization Problem Solving Using Estimation of Distribution Algorithms
,”
2004 Congress on Evolutionary Computation
, June 20–23, 2004,
Portland
, OR, pp.
296
302
.
41.
Simionescu
,
P. A.
, 1998, “
A Unified Approach to the Assembly Condition of Epicyclic Gears
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
448
452
.
42.
Simionescu
,
P. A.
, and
Beale
,
D.
, 2004, “
Visualization of Multivariable (Objective) Functions by Partial Global Optimization
,”
Visual Comput.
0178-2789,
20
, pp.
665
681
.
You do not currently have access to this content.