The determination of the 6D singularity locus of the general Gough-Stewart platform is discussed in this article. The derivation of the velocity equation and the corresponding Jacobian matrices is first presented. Then a new procedure is introduced to obtain the analytical expression of the singularity locus, which is a function of six variables (x,y,z,ϕ,θ,ψ), using the velocity equation. Examples are also given to illustrate the results obtained. Gough-Stewart platforms can be used in several robotic applications as well as in flight simulators. The determination of the singularity locus is a very important design and application issue.

1.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
2.
Tsai
,
L.-W.
, 1999,
Robot Analysis
,
Wiley
, New York.
3.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1994, “
Singularity Analysis of Mechanisms and Robots via a Velocity-Equation Model of the Instantaneous Kinematics
,” in
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego
, CA, USA, pp.
986
991
.
4.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities of Parallel Mechanisms
,” in
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington
, D.C., pp.
496
502
.
5.
Collins
,
C. L.
, and
McCarthy
,
J. M.
, 1998, “
The Quatic Singularity Surfaces of Planar Platforms in the Clifford Algebra of the Projective Plane
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
931
944
.
6.
Sefrioui
,
J.
, and
Gosselin
,
C.
, 1993, “
Singularity Analysis and Representation of Planar Parallel Manipulators
,”
J. Rob. Syst.
0741-2223,
10
, pp.
209
224
.
7.
Sefrioui
,
J.
, and
Gosselin
,
C.
, 1995, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
30
(
4
), pp.
533
551
.
8.
Di Gregorio
,
R.
, 2004, “
Forward Problem Singularities of Manipulators Which Become PS-2RS or 2PS-RS Structures When the Actuators are Locked
,”
J. Mech. Des.
1050-0472,
126
(
4
), pp.
640
645
.
9.
Wang
,
J.
, and
Gosselin
,
C. M.
, 1998, “
Kinematic Analysis and Singularity Loci of Spatial Four-Degree-of-Freedom Parallel Manipulators Using a Vector Formulation
,”
J. Mech. Des.
1050-0472,
120
, pp.
555
558
.
10.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, Cambridge.
11.
Fichter
,
E. F.
, 1986, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
157
182
.
12.
Huang
,
Z.
,
Chen
,
L. H.
, and
Li
,
Y. W.
, 2003, “
The Singularity Principle and Property of Stewart Parallel Manipulator
,”
J. Rob. Syst.
0741-2223,
20
(
4
), pp.
163
176
.
13.
Di Gregorio
,
R.
, 2001, “
Analytic Formulation of the 6-3 Fully-Parallel Manipulator’s Singularity Determination
,”
Robotica
0263-5747,
19
, pp.
663
667
.
14.
Di Gregorio
,
R.
, 2002, “
Singularity-Locus Expression of a Class of Parallel Mechanisms
,”
Robotica
0263-5747,
20
, pp.
323
328
.
15.
Wolf
,
A.
, and
Shoham
,
M.
, 2003, “
Investigation of Parallel Manipultors Using Linear Complex Approximation
,”
J. Mech. Des.
1050-0472,
125
, pp.
564
572
.
16.
Merlet
,
J. P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
45
56
.
17.
Kim
,
D.
, and
Chung
,
W. Y.
, 1999, “
Analytic Singularity Equation and Analysis of Six-DOF Parallel Manipulators Using Local Structurization Method
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
(
4
), pp.
612
622
.
18.
Mayer St-Onge
,
B.
, and
Gosselin
,
C. M.
, 2000, “
Singularity Analysis and Representation of the General Gough-Stewart Platform
,”
Int. J. Robot. Res.
0278-3649,
19
(
3
), pp.
271
288
.
19.
Spring
,
K. W.
, 1986, “
Euler Parameters and the use of Quaternion Algebra in the Manipulation of Finite Rotations: A Review
,”
Mech. Mach. Theory
0094-114X,
21
(
5
), pp.
365
373
.
20.
Strang
,
G.
, 1988,
Linear Algebra and its Applications
,
Saunders College
, Fort Worth, TX.
You do not currently have access to this content.