In this article the process of rigorously setting supersystem targets in an enterprise context is explored as a model-based approach termed “analytical target setting.” Engineering design decisions have more value and lasting impact if they are made in the context of the enterprise that produces the designed product. Setting targets that the designer must meet is often done at a high level within the enterprise, however, with inadequate consideration of the engineering design embodiment and associated cost. For complex artifacts produced by compartmentalized hierarchical enterprises, the challenge of linking the target setting rationale with the product instantiation is particularly demanding. The previously developed analytical target cascading process addresses the problem of translating top level design targets into design targets for all systems in a multilevel hierarchically structured product, so that local targets are consistent with each other and top targets can be met as closely as possible. The effectiveness of linking analytical target setting and target cascading is demonstrated in a hybrid electric automotive truck vehicle example. The manufacturer introduces a new product (hybrid electric truck) in the market under uncertainty in fuel prices during the life cycle of the vehicle. The example demonstrates a clear interaction between the enterprise decision making and the engineering product development.

1.
Papalambros
,
P. Y.
, 2002, “
An Enterprize Context for Design Optimization
,”
6th Biennial Conference on Engineering Systems Design and Analysis
, Istanbul, Turkey.
2.
Michelena
,
N.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
, 1999, “
A System Partitioning and Optimization Approach to Target Cascading
,” in
Proceedings of the 12th International Conference on Engineering Design
,
Munich
, Vol.
2
, pp.
1109
1112
.
3.
Kim
,
H. M.
, 2001, “
Target Cascading in Optimal System Design
,” PhD thesis, The University of Michigan, Ann Arbor, MI.
4.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L.
,
Delagrammatikas
,
G.
,
Michelena
,
N.
,
Filipi
,
Z.
,
Papalambros
,
P.
, and
Assanis
,
D.
, 2002, “
Target Cascading in Vehicle Redesign: A Class VI Truck Study
,”
Int. J. Veh. Des.
0143-3369,
29
(
3
), pp.
199
225
.
5.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
474
480
.
6.
Braun
,
R.
, 1996, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” PhD thesis, Stanford University, Stanford, CA.
7.
Kronsjo
,
T.
, 1969, “
Decomposition of a Large Nonlinear Convex Separable Economic System in the Dual Direction
,”
Econ. Plann.
0013-0451,
9
, pp.
71
94
.
8.
Lassiter
,
J.
,
Wiecek
,
M.
, and
Andrighetti
,
K.
, 2003, “
Lagrangian Coordination and Analytical Target Cascading: Solving Atc-Decomposed Problems With Lagrangian Duality
” to appear in Optimization and Engineering.
9.
Better
,
D. C.
, 1962, “
Finding an Optimal Value in Relation to a Fixed Lower Limit and Arbitrary Upper Limit
,”
Appl. Stat.
0285-0370,
3
, pp.
202
210
.
10.
Krzysztofowicz
,
R.
, 1990, “
Target Setting Problem With Exponential Utility
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
20
(
3
), pp.
687
688
.
11.
Athanassopoulos
,
A. D.
,
Lambroukos
,
N.
, and
Seiford
,
L.
, 1999, “
Data Envelopment Scenario Analysis for Setting Targets to Electricity Generating Plants
,”
Eur. J. Oper. Res.
0377-2217,
115
(
3
), pp.
413
428
.
12.
Haas
,
F. M.
, and
Verrijdt
,
J. H. C. M.
, 1997, “
Target Setting for the Departments in an Aircraft Repairable Item System
,”
Eur. J. Oper. Res.
0377-2217,
99
(
7
), pp.
596
602
.
13.
Vasermanis
,
E. K.
,
Nechval
,
K. N.
, and
Nechval
,
N. A.
, 2002, “
Optimiation of Target Value for an Industrial Process
,”
15th Triennial World Congress of the International Federation of Automatic Control
, Barcelona, Spain.
14.
Thompson
,
K. R.
,
Hochwarter
,
W. A.
, and
Mathys
,
N. J.
, 1997, “
Stretch Targets: What Makes Them Effective
?”
Acad. Manage. Exec.
1079-5545,
11
(
3
), pp.
48
60
.
15.
Locke
,
E. A.
, and
Latham
,
G. P.
, 1990,
Theory of Goal Setting and Task Performance
,
Prentice-Hall
, Englewood Cliffs, NJ.
16.
Carrol
,
S. J.
, and
Tosi
,
H. L.
, 1973,
Management by Objectives: Application and Research
,
Macmillan
, NY.
17.
Gu
,
X.
,
Renaud
,
J. E.
,
Ashe
,
L. M.
,
Batill
,
S. M.
,
Budhiraja
,
A. S.
, and
Krajewski
,
L. J.
, 2002, “
Decision-Based Collaborative Optimization
,”
ASME J. Mech. Des.
1050-0472,
124
(
1
), pp.
1
13
.
18.
Thurston
,
D. L.
, and
Locascio
,
A.
, 1994, “
Design Theory for Design Economics
,”
Eng. Econom.
0013-791X,
40
(
1
), pp.
41
72
.
19.
Thurston
,
D. L.
,
Carnahan
,
J. V.
, and
Liu
,
T.
, 1994, “
Optimization of Design Utility
,”
J. Mech. Des.
1050-0472,
116
, pp.
801
808
.
20.
Thurston
,
D. L.
, 1999, “
Real and Perceived Limitations to Decision-Based Design
,” ASME DETC, Las Vegas, NV, DETC1999/DAC-8750.
21.
McConville
,
G. P.
, and
Cook
,
H. E.
, 1996, “
Estimating the Value Trade-Off Between Automobile Performance and Fuel Economy
,”
SAE International Congress
, SAE Paper 960004.
22.
Cook
,
H. E.
, 1997,
Product Management: Value, Quality, Cost, Price, Profits, and Organization
,
Chapman and Hall
, Hingham, MA.
23.
Donndelinger
,
J.
, and
Cook
,
H. E.
, 1997, “
Methods for Analyzing the Value of Vehicles
,” Society of Automotive Engineers, SAE Paper 970762, Warrendale, PA.
24.
Hazelrigg
,
G. A.
, 1998, “
A Framework for Decision Based Engineering Design
,”
J. Mech. Des.
1050-0472,
120
, pp.
653
658
.
25.
Hazelrigg
,
G. A.
, 2000, Special Edition on “
Decision-Based Design: Status and Promise
,”
Econ. Plann.
0013-0451,
3
(
1
).
26.
Marston
,
M.
, and
Mistree
,
F.
, 1998, “
An Implementation of Expected Utility Theory in Decision Based Design
,” ASME DETC, Atlanda, GA, DETC1998/DTM-5670.
27.
Marston
,
M.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2000, “
The Decision Support Problem Technique: Integrating Descriptive and Normative Approaches in Decision-Based Design
,”
Econ. Plann.
0013-0451,
3
(
1
), pp.
107
129
.
28.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 1999, “
Arrow’s Theorem and Engineering Design Decision Making
,”
Res. Eng. Des.
0934-9839,
11
, pp.
218
228
.
29.
Whitcomb
,
C. A.
,
Palli
,
N.
, and
Azarm
,
S.
, 1999, “
A Prescriptive Production-Distribution Approach for Decision Making in New Product Design
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
29
(
3
), pp.
336
348
.
30.
Allen
,
B.
, 2000, “
A Toolkit for Decision-Based Design Theory
,”
J. Eng. Valuation Cost Anal.
1024-9559,
3
(
1
), pp.
85
105
.
31.
Allen
,
B.
, 2001, “
On the Aggregation of Preferences in Engineering Design
,” ASME DETC, Pittsburgh, PA, USA, DETC2001/DAC-21015.
32.
Chen
,
W.
,
Lewis
,
K.
, and
Schmidt
,
L.
, 2000, Special issue on “
Decision-Based Design: Status and Promise
,”
Econ. Plann.
0013-0451,
3
(
1
), pp.
57
66
.
33.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,” in
Proceedings of DETC 2000 ASME Design Engineering Technical Conference
,
Baltimore
, MD, DETC2000/DAC-14234.
34.
Li
,
H.
, and
Azarm
,
S.
, 2002, “
An Approach for Product Line Design Selection Under Uncertainty and Competition
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
385
392
.
35.
Markish
,
J.
, and
Willcox
,
K.
, 2002, “
Multidisciplinary Techniques for Commercial Aircraft System Design
,” in
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Vol.
2
, Atlanta, GA, AIAA-2002-5612.
36.
Markish
,
J.
, and
Willcox
,
K.
, 2002, “
A Value-Based Approach for Commercial Aircraft Conceptual Design
,” in
23rd ICAS Congress
, Toronto, Canada.
37.
Mavris
,
D. N.
,
Briceno
,
S. I.
, and
Fernandez
,
I.
, 2003, “
Development of a Strategic Business Decision-Making Environment for Commercial Jet Engine Selection
,” in
Proceedings of the 41st AIAA Aerospace Sciences, Meeting and Exhibit
,
Reno
, NV, USA.
38.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
490
497
.
39.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
Jie
, and
Sudjianto
,
A.
, 2003, “
Enhancing Discrete Choice Demand Modling for Decision-Based Design
,” in
Proceedings of DETC 2003 ASME Design Engineering Technical Conference
, Chicago, IL, DETC2003/DTM-48683.
40.
Georgiopoulos
,
P.
,
Jonsson
,
M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Optimal Design Decision to the Theory of the Firm: The Case of Resource Allocation
,”
J. Math. Biol.
0303-6812,
127
, pp.
358
366
.
41.
Energy and Environmental Analysis Inc.
,
Echnology and Costs of the Toyota Prius
, 1998.
42.
Lin
,
C.-C.
,
Filipi
,
Z. S.
,
Wang
,
Y.
,
Louca
,
L.
,
Peng
,
H.
,
Assanis
,
D. N.
, and
Stein
,
J. L.
, 2001, “
Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in Simulink and its Use for Power Management Studies
,”
SAE 2001 World Congress
, SAE Paper No. 2001-01-1334.
43.
Clyde
,
P.
, 2001, “
Business Economics 501
,” CD-ROM ed., University of Michigan Business School, Ann Arbor, MI.
44.
Cooper
,
A. B.
, 2003, “
An Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation
,” M.Sc. thesis, University of Michigan.
45.
Adner
,
R.
, and
Levinthal
,
D.
, 2001, “
Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation
,”
Manage. Sci.
0025-1909,
47
, pp.
611
628
.
46.
EPA
, 2002,
Nonconformance penalties for 2004 highway heavy duty diesel engines
. Draft Technical Support Document.
47.
Dixit
,
A. K.
, and
Pindyck
,
R. S.
, 1994,
Investment Under Uncertainty
,
Princeton University Press
, Princeton.
49.
Brealey
,
R. A.
, and
Myers
,
S. C.
, 2000,
Principles of Corporate Finance
,
McGraw-Hill
, New York.
50.
An
,
F.
,
Stodolsky
,
F.
,
Vyas
,
A.
,
Cuenca
,
R.
, and
Eberhardt
,
J. J.
, 1989, “
Scenario Analysis of Hybrid Class 3-7 Heavy Vehicles
,”
SAE 2000 World Congress
, SAE Paper No. 2000-01-0989.
51.
Georgiopoulos
,
P.
, 2003, “
Enterprise-Wide Product Design: Linking Optimal Design Decisions to the Theory of the Firm
,” Dr. Eng. thesis, University of Michigan, Ann Arbor, MI, USA.
52.
Grant
,
R. M.
, 1998,
Contemporary Strategy Analysis
,
Blackwell
, New York.
53.
Bollen
,
N. P. B.
, 1999, “
Real Options and Product Life Cycles
,”
Manage. Sci.
0025-1909,
45
(
5
), pp.
670
684
.
54.
Coleman
,
T.
,
Branch
,
M. A.
, and
Grace
,
A.
, 2000,
Dynamic System Simulation for MATLAB
,
Natick
, MA, 2nd ed., Version 4.
55.
The Math Works, Inc.
, Natick, MA, 1999,
Optimization Toolbox for Use with MATLAB
, version 2 edition.
56.
Norwell
,
M. A.
, 2001, Kluwer, pp.
431
440
.
57.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, “
Convergence Properties of Analytical Target Cascading
,” Vol.
2
,
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Atlanta, GA, AIAA-2002-5506.
58.
Cooper
,
A. B.
, and
Papalambros
,
P. Y.
, 2003, “
An Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation
,” ASME IMECE 2003, Washington, D.C.
You do not currently have access to this content.