Abstract

Numerical methods for solving boundary value problems that do not require generation of mesh to approximate the analysis domain have been referred to as mesh-free methods. While many of these are “mesh less” methods that do not have connectivity between nodes, a subset of these methods uses a structured mesh or grid for the analysis that does not conform to the geometry of the domain of analysis. Instead the geometry is represented using implicit equations. In this paper we present a method for constructing step functions of solids whose boundaries are represented using implicit equations. Step functions can be used to compute volume integrals over the solid that are needed for mesh free analysis. The step function of the solid has a unit value within the solid and zero outside. A level set of this step function can then be defined as the boundary of the solid. Boolean operators are defined in this paper that enable step functions of half-spaces and primitives to be combined to construct a single step function for more complex solids. Application of step functions to analysis using nonconforming mesh is illustrated.

References

1.
Mortenson
,
M. E.
, 1997,
Geometric Modeling
, 2nd ed.,
Wiley Computer Publishing, Wiley
, NY.
2.
Hoffmann
,
C.
, 1989,
Geometric and Solid Modeling: An Introduction
,
Morgan Kaufmann
, San Francisco, CA.
3.
Mäntylä
,
M.
, 1988,
An Introduction to Solid Modeling
,
Computer Science Press
, Rockville, Md.
4.
Requicha
,
A. A. G.
, and
Voelcker
,
H. B.
, 1982, “
Solid Modeling: A Historical Summary and Contemporary Assessment
,”
IEEE Comput. Graphics Appl.
0272-1716,
2
(
2
), pp.
9
24
.
5.
Lee
,
K.
, 1999,
Principles of CAD∕CAM∕CAE System
,
Addison-Wesley
, Reading. MA.
6.
Requicha
,
A. A. G.
, and
Voelcker
,
H. B.
, 1985, “
Boolean Operations in Solid Modeling: Boundary Evaluation and Merging Algorithms
,”
Proc. IEEE
0018-9219,
73
(
2
), pp.
30
44
.
7.
Bloomenthal
,
J.
, 1997,
Introduction to Implicit Surfaces
,
Morgan Kaufmann
, San Francisco, CA.
8.
Velho
,
L.
,
Gomes
,
J.
, and
Figueredo
,
L.
, 2002,
Implicit Objects in Computer Graphics
,
Springer-Verlag
, NY.
9.
Lorensen
,
W.
, and
Cline
,
H.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graph.
0097-8930,
21
(
4
), pp.
163
169
.
10.
Glassner
,
A.
, 1989,
An Introduction to Ray Tracing
,
Academic
, London.
11.
Bajaj
,
C.
, et al.
, 1995, “
Modeling with Cubic A-Patches
,”
ACM Trans. Graphics
0730-0301,
14
(
2
), pp.
103
133
.
12.
Zhao
,
H. K.
,
Osher
,
S.
,
Merriman
,
B.
, and
Kang
,
M.
, 2000, “
Implicit and Non-Parametric Shape Reconstruction from Unorganized Data using a Variational Level Set Method
,”
Comput. Vis. Image Underst.
1077-3142,
80
, pp.
295
314
.
13.
Lim
,
C. T.
,
Ensz
,
M. T.
,
Ganter
,
M. A.
, and
Storti
,
D. W.
, 1997, “
Object Reconstruction from Layered Data Using Implicit Solid Modeling
,”
J. Manuf. Syst.
0278-6125,
16
(
4
), pp.
260
272
.
14.
Carr
,
J. C.
,
Beatson
,
R. K.
,
Cherrie
,
J. B.
,
Mitchell
,
T. J.
,
Fright
,
W. R.
,
McCallum
,
B. C.
, and
Evans
,
T. R.
, 2001, “
Reconstruction and Representation of 3D Objects with Radial Basis Functions
,” pp.
67
76
,
Proceedings of SIGRAPH2001
.
15.
Ohtake
,
Y.
,
Belyaev
,
A.
,
Alexa
,
M.
,
Turk
,
G.
, and
Seidel
,
H. P.
, 2002, “
Multi-Level Partition of Unity Implicits
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
463
470
.
16.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
, 1995, ”
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Visual Comput.
0178-2789,
11
(
8
), pp.
429
446
.
17.
Rvachev
,
V. L.
, and
Shieko
,
T. I.
, 1995, “
R-Functions in Boundary Value Problems in Mechanics
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
151
188
.
18.
Lui
,
G. R.
, 2003,
Mesh Free Methods: Moving Beyond the Finite Element Method
,
CRC Press
, NY.
19.
Kantorovich
,
L. V.
, and
Krylov
,
V. I.
, 1958,
Approximate Methods of Higher Analysis
,
Interscience
, NY.
20.
Shapiro
,
V.
, and
Tsukanov
,
I.
, 1999, “
Meshfree Simulation of Deforming Domains
,”
CAD
0010-4485,
31
, pp.
459
471
.
21.
Höllig
,
K.
, 2003, “
Finite element methods with B-Splines
,”
SIAM Series on Frontiers in Applied Mathematics
.
22.
Belytschko
,
T.
,
Parimi
,
C.
,
Moes
,
N.
,
Sukumar
,
N.
, and
Usui
,
S.
, 2003, “
Structured Extended Finite Element Methods for Solids Defined by Implicit Surfaces
,”
Int. J. Numer. Methods Eng.
0029-5981,
56
, pp.
609
635
.
23.
Osher
,
S.
, and
Fedkiw
,
R.
, 2003, “
Level Set Methods and Dynamic Implicit Surfaces
,”
Applied Mathematical Sciences
, Vol.
153
,
Springer Verlag
, NY.
24.
Miura
,
K. T.
,
Pasko
,
A. A.
, and
Savchenko
,
V. V.
, “
Parametric Patches and Volumes in the Functional Representation of Geometric Solids
,”
CSG 96 Set-theoretic Solid Modeling: Techniques and Applications
, pp.
217
231
.
25.
Raviv
,
A.
, and
Elber
,
G.
, 1999, “
Three Dimensional Freeform Sculpting via Zero Sets of Scalar Trivariate Functions
,”
Proceedings of the Fifth Symposium on Solid Modeling and Applications
,
ACM Press
, pp.
246
257
.
26.
Kreyszig
,
E.
, 1999,
Advanced Engineering Mathematics
, 8th ed.,
Wiley
, NY.
27.
Zeid
,
I.
, 1991,
CAD∕CAM Theory and Practice
,
McGraw-Hill
, NJ.
28.
Hu
,
Z. J.
, and
Ling
,
Z. K.
, 1996, “
Swept Volumes Generated by the Natural Quadric Surfaces
”,
Comput. Graphics
0097-8493,
20
(
2
), pp.
263
274
.
29.
Hui
,
K. C.
, 1994, “
Solid Modeling with Sweep-CSG Representation
,”
CSG 94 Set Theoretic Solid Modeling: Techniques and Applications
, pp.
119
131
.
30.
Crespin
,
B.
,
Blanc
,
C.
, and
Schlick
,
C.
, 1996, “
Implicit Sweep Objects
,”
Comput. Graph. Forum
0167-7055,
15
(
3
), pp.
165
174
.
31.
Kumar
,
A. V.
, and
Yu
,
L.
, 2001, “
Sequential Constraint Imposition for Dimension-Driven Solid Models
”,
CAD
0010-4485,
33
(
6
), pp.
475
486
.
32.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice Hall
, Englewood Cliffs, NJ.
33.
Clark
,
B. W.
, and
Anderson
,
D. C.
, 2002, “
Finite Element Analysis in 3D Using the Penalty Boundary Method
,”
Proceedings for DETC’02, ASME 2002 Computer and Information in Engineering Conference
, Montreal, Canada, Sept. 29–Oct. 2, 2002.
34.
Boresi
,
A. P.
,
Schmidt
,
R. J.
, and
Sidebottom
,
O. M.
, 1993,
Advanced Mechanics of Materials
, 5th ed.,
J Wiley
, NY.
35.
Xu
,
L.
,
Huang
,
Z.
, and
Yang
,
Y.
, 2004, “
Mesh Theory for Toroidal Drive
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
551
557
.
36.
Yamakawa
,
S.
, and
Shimada
,
K.
, 2002, “
Quad-Layer: Layered Quadrilateral Meshing of Narrow Two-Dimensional Domains by Bubble Packing and Chordal Axis Transformation
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
564
573
.
37.
Kumar
,
A. V.
, 2000, “
A Sequential Optimization Algorithm Using Logarithmic Barriers: Applications to Structural Optimization
,”
ASME J. Mech. Des.
1050-0472,
122
(
3
), pp.
271
277
.
38.
Qian
,
X.
, and
Dutta
,
D.
, 2002, “
Physics-Based Modeling for Heterogeneous Objects
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
416
427
.
You do not currently have access to this content.