In this paper, a 6R linkage suitable as a building block for the construction of large deployable structures is presented. First, we report the possibility of construct an extended 5R Myard linkage by combining two complimentary Bennett linkages. Unlike the original 5R Myard linkage (also called Myard’s “number 1” linkage), the angle of twists in the Bennett linkages is not necessary to be π2. Then we show that a 6R linkage can be produced by merging two extended Myard linkages together and removing the common links. The closure equations for the 6R linkage are derived and its motion characteristics are discussed. Moreover, we demonstrate that a number of such 6R linkages can be assembled together to form a large-scale deployable structure, which opens to a flat profile.

1.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
2.
Bennett
,
G. T.
, 1903, “
A New Mechanism
,”
Engineering (London)
0013-7782,
76
, pp.
777
778
.
3.
Myard
,
F. E.
, 1931, “
Contribution à la Géométrie des Systèmes Articulés
,”
Bulletin de la Société Mathématique de France
0037-9484,
59
, pp.
183
210
.
4.
Goldberg
,
M.
, 1943, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
0097-6822,
65
, pp.
649
663
.
5.
Mavroidis
,
C.
, and
Roth
,
B.
, 1994, “
Analysis and Synthesis of Overconstrained Mechanism
,”
Proceedings of the 1994 ASME Design Technical Conference
,
Minneapolis, MI
, Sept., pp.
115
133
.
6.
Dietmaier
,
P.
, 1995, “
A New 6R Space Mechanism
,”
Proceedings of the Ninth World Congress IFToMM
, Milano, Vol.
1
, pp.
52
56
.
7.
Wohlhart
,
K.
, 1991, “
Merging Two General Goldberg 5R Linkages to Obtain a New 6R Space Mechanism
,”
Mech. Mach. Theory
0094-114X,
26
(
2
), pp.
659
668
.
8.
Chen
,
Y.
, 2003, “
Design of Structural Mechanism
,” Ph.D. thesis, University of Oxford.
9.
Baker
,
J. E.
, 2006, “
On Generating a Class of Foldable Six-Bar Spatial Linkages
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
374
383
.
10.
Baker
,
J. E.
, 1979, “
The Bennett, Goldberg and Myard Linkages—in Perspective
,”
Mech. Mach. Theory
0094-114X,
14
, pp.
239
253
.
11.
Baker
,
J. E.
, 1993, “
A Comparative Survey of the Bennett-Based 6-Revolute Kinematic Loops
,”
Mech. Mach. Theory
0094-114X,
28
, pp.
83
96
.
12.
Gan
,
W. W.
, and
Pellegrino
,
S.
, 2003, “
Closed-Loop Deployable Structures
,”
Proceedings of the 44th AIAA∕ASME∕ASCE∕AHS∕ASC Structures, Structural Dynamics and Materials Conference
,
Norfolk, VA
, Apr. 7–10, AIAA Paper No. 2003-1450.
13.
Briand
,
S.
, and
You
,
Z.
, 2007, “
New Deployable Mechanisms
,”
Department of Engineering Science, University of Oxford
, Report No. 2293∕07.
14.
Calladine
,
C. R.
, 1978, “
Buckminster Fuller’s “Tensegrity” Structures and Clerk Maxwell’s Rules for the Construction of Stiff Frames
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
161
172
.
15.
Calladine
,
C. R.
, and
Pellegrino
,
S.
, 1991, “
First-Order Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
0020-7683,
27
(
4
), pp.
505
515
.
16.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
, 2005, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
0020-7683,
42
(
8
), pp.
2287
2301
.
17.
Altmann
,
P. G.
, 1954, “
Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
0020-3483,
168
(
37
), pp.
889
896
.
18.
Chen
,
Y.
, and
You
,
Z.
, 2006, “
Square Deployable Frame for Space Applications: Part I: Theory
,”
Proc. Inst. Mech. Engr., Part G: J. Aerosp. Eng.
,
220
(
4
), pp.
347
354
.
19.
Chen
,
Y.
, and
You
,
Z.
, 2007, “
Square Deployable Frame for Space Applications: Part II: Realisation
,”
Proc. Inst. Mech. Engr., Part G: J. Aerosp. Eng.
,
221
(
1
), pp.
37
45
.
You do not currently have access to this content.