McKibben actuators are pneumatic actuators with very high force to weight ratios. Their ability to match the behavior of biological muscles better than any other actuators has motivated much research into the characterization and modeling of these actuators. The purpose of this paper is to experimentally characterize the behavior of McKibben artificial muscles with basic geometric parameters, and present a model that is able to predict the static behavior accurately in terms of blocked force and free displacement. A series of experiments aimed at understanding the static behavior of the actuators was conducted. The results for three different lengths (4 in., 6 in., and 8 in.), three diameters (1/8 in., 1/4 in., and 3/8 in.), and one wall thickness (1/16 in.) at pressures ranging from 10 psi to 60 psi illustrate the key design trends seen in McKibben actuator geometry. While existing models predict this static behavior, there are varying degrees of accuarcy, which motivates the present study. Using knowledge gained from the experimental study, improvements for the two modeling approaches were explored, including effects from elastic energy storage, noncylindrical shape, and variable thickness. To increase model accuracy, another set of experiments was used to characterize the elasticity of the rubber tubes and fibers of the braid. Comparisons of the measured data to the improved model indicate that the ability to accurately predict the static behavior of McKibben actuators has increased.

1.
Schulte
,
H.
, 1961, “
The Characteristics of the McKibben Artificial Muscles
,”
The Application of External Power in Prosthetics and Orthotics
,
National Academy of Sciences-National Research Council
,
Washington, DC
, pp.
94
115
.
2.
Nickel
,
V.
,
Perry
,
J.
, and
Garrett
,
A.
, 1963, “
Development of Useful Function in the Severely Paralyzed Hand
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
45
(
5
), pp.
933
952
.
3.
Gaylord
,
R.
, 1958, “
Fluid Actuated Motor System and Stroking Device
,” U.S. Patent No. 2,844,126.
4.
Tondu
,
B.
, and
Lopez
,
P.
, 1997, “
The McKibben Muscle and Its Use in Actuating Robot-Arms Showing Similarities With Human Arm Behaviour
,”
Ind. Robot
0143-991X,
24
(
6
), pp.
432
439
.
5.
Klute
,
G.
,
Czerniecki
,
J.
, and
Hannaford
,
B.
, 2002, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Robot. Res.
0278-3649,
21
(
4
), pp.
295
309
.
6.
Kerscher
,
T.
,
Albiez
,
J.
, and
Berns
,
K.
, 2002, “
Joint Control of the Six-Legged Robot Airbug Driven by Fluidic Muscles
,”
Proceedings of the Third IEEE International Workshop on Robot Motion and Control
, pp.
27
32
.
7.
Daerden
,
F.
,
Lefeber
,
D.
,
Verrelst
,
B.
, and
Ham
,
R. V.
, 2001, “
Pleated Pneumatic Artificial Muscles: Compliant Robotic Actuators
,”
Proceedings of IROS
, Vol.
4
, pp.
1958
1963
.
8.
Philen
,
M.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K.
,
Rahn
,
C.
,
Zydney
,
A.
, and
Bakis
,
C.
, 2004, “
Fibrillar Network Adaptive Structure With Ion Transport Actuation
,”
Proceedings of ICAST
.
9.
Daerden
,
F.
, and
Lefeber
,
D.
, 2002, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
European Journal of Mechanical and Environmental Engineering
,
47
, pp.
10
21
.
10.
Chou
,
C.
, and
Hannaford
,
B.
, 1994, “
Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles
,”
Proceedings of ICRA
, Vol.
1
, pp.
281
286
.
11.
Klute
,
G.
, and
Hannaford
,
B.
, 1998, “
Fatigue Characteristics of McKibben Artificial Muscle Actuators
,”
Proceedings of IROS
, Vol.
3
, pp.
1776
1782
.
12.
Kingsley
,
D.
, and
Quinn
,
R.
, 2002, “
Fatigue Life and Frequency Response of Braided Pneumatic Actuators
,”
Proceedings of ICRA
, Vol.
3
, pp.
2830
2835
.
13.
van der Smagt
,
P.
,
Groen
,
F.
, and
Schulten
,
K.
, 1996, “
Analysis and Control of a Rubbertuator Arm
,”
Biol. Cybern.
0340-1200,
75
(
5
), pp.
433
440
.
14.
Thongchai
,
S.
,
Goldfarb
,
M.
,
Sarkar
,
N.
, and
Kawamura
,
K.
, 2001, “
A Frequency Modeling Method of Rubbertuators for Control Application in an Ima Framework
,”
Proceedings of the American Controls Conference
, Vol.
2
, pp.
1710
1714
.
15.
Schroder
,
J.
,
Erol
,
D.
,
Kawamura
,
K.
, and
Dillman
,
R.
, 2003, “
Dynamic Pneumatic Actuator Model for a Model-Based Torque Controller
,”
Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation
, Vol.
1
, pp.
342
347
.
16.
Tondu
,
B.
,
Ippolito
,
S.
,
Guiochet
,
J.
, and
Daidie
,
A.
, 2005, “
A Seven-Degrees-of-Freedom Robot-Arm Driven by Pneumatic Artificial Muscles for Humanoid Robots
,”
Int. J. Robot. Res.
0278-3649,
24
(
4
), pp.
257
274
.
17.
Trivedi
,
D.
,
Dienno
,
D.
, and
Rahn
,
C.
, 2008, “
Optimal, Model-Based Design of Soft Robotic Manipulator
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
091402
.
18.
van der Linde
,
R.
, 1999, “
Design, Analysis, and Control of a Low Power Joint for Walking Robots, by Phasic Activation of McKibben Muscles
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
4
), pp.
599
604
.
19.
Colbrunn
,
R.
,
Nelson
,
G.
, and
Quinn
,
R.
, 2001, “
Design and Control of a Robotic Leg With Braided Pneumatic Actuators
,”
Proceedings of IROS
, Vol.
2
, pp.
992
998
.
20.
Colbrunn
,
R.
,
Nelson
,
G.
, and
Quinn
,
R.
, 2001, “
Modeling of Braided Pneumatic Actuators for Robotic Control
,”
Proceedings of IROS
, Vol.
4
, pp.
1964
1970
.
21.
Caldwell
,
D.
, and
Tsagarakis
,
N.
, 2002, “
Biomimetic Actuators in Prosthetic and Rehabilitation Applications
,”
Technol. Health Care
0928-7329,
10
(
2
), pp.
107
120
.
22.
Kobayashi
,
H.
,
Uchimura
,
A.
,
Isihida
,
Y.
,
Shiiba
,
T.
,
Hiramatsu
,
K.
,
Konami
,
M.
,
Matsushita
,
T.
, and
Sato
,
Y.
, 2004, “
Development of a Muscle Suit for the Upper Body—Realization of Abduction Motion
,”
Adv. Rob.
0169-1864,
18
(
5
), pp.
497
513
.
23.
Sawicki
,
G.
,
Gordon
,
K.
, and
Ferris
,
D.
, 2005, “
Powered Lower Limb Orthoses: Applications in Motor Adaptation and Rehabilitation
,”
Proceedings of the IEEE ICORR
, pp.
206
211
.
24.
Davis
,
S.
, and
Caldwell
,
D.
, 2006, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators
,”
Int. J. Robot. Res.
0278-3649,
25
(
4
), pp.
359
369
.
25.
Davis
,
S.
,
Tsagarakis
,
N.
,
Canderle
,
J.
, and
Caldwell
,
D.
, 2003, “
Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators
,”
Int. J. Robot. Res.
0278-3649,
22
(
3–4
), pp.
213
227
.
26.
Chou
,
C.
, and
Hannaford
,
B.
, 1996, “
Measurements and Modeling of Mckibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
1
), pp.
90
102
.
27.
Ferraresi
,
C.
,
Franco
,
W.
, and
Bertetto
,
A.
, 2001, “
Flexible Pneumatic Actuators: A Comparison Between the McKibben and Straight Fibres Muscles
,”
Journal of Robotics and Mechatronics
,
13
(
1
), pp.
56
63
.
28.
Liu
,
W.
, and
Rahn
,
C.
, 2003, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
0021-8936,
70
(
6
), pp.
853
859
.
29.
Shan
,
Y.
,
Philen
,
M.
,
Bakis
,
C.
,
Wang
,
K.
, and
Rahn
,
C.
, 2006, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
0266-3538,
66
(
15
), pp.
3053
3063
.
30.
Sanchez
,
A.
,
Mahout
,
V.
, and
Tondu
,
B.
, 1998, “
Nonlinear Parametric Identification of a McKibben Artificial Pneumatic Muscle Using Flatness Property of the System
,”
Proceedings of the International Conference on Control Applications
, Vol.
1
, pp.
70
74
.
31.
Klute
,
G.
, and
Hannaford
,
B.
, 2000, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
2
), pp.
386
388
.
32.
Tsagarakis
,
N.
, and
Caldwell
,
D.
, 2000, “
Improved Modelling and Assessment of Pneumatic Muscle Actuators
,”
Proceedings of ICRA
, Vol.
4
, pp.
3641
3646
.
33.
Rivlin
,
R.
, and
Saunders
,
D.
, 1951, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
243
(
865
), pp.
251
288
.
34.
Treloar
,
L.
, 1958,
The Physics of Rubber Elasticity
,
Oxford University Press
,
London, England
.
35.
Delson
,
N.
,
Hanak
,
T.
,
Loewke
,
K.
, and
Miller
,
D.
, 2005, “
Modeling and Implementation of McKibben Actuators for a Hopping Robot
,”
Proceedings of 12th International Conference on Advanced Robotics
, Vol.
12
, pp.
833
840
, Paper No. 70.
You do not currently have access to this content.