Flexure hinges have been used to produce frictionless and backlashless transmissions in a variety of precision mechanisms. Although there are many types of flexure hinges available, designers often chose a single type of flexure hinge (e.g., circular flexure hinges) without considering others in the design of flexure-based mechanisms. This is because the analytical equations are unique to each kind of flexure hinge. This work offers a solution to this problem in the form of a generalized flexure hinge model. We propose a new class of flexure hinges, namely, elliptical-arc-fillet flexure hinges, which brings elliptical arc, circular-arc-fillet, elliptical-fillet, elliptical, circular, circular-fillet, and right-circular flexure hinges together under one set of equations. The closed-form equations for all the elements in the compliance and precision matrices of elliptical-arc-fillet flexure hinges have been derived. The analytical results are within 10 percent error compared to the finite element results and within 8 percent error compared to the experimental results. The equations for evaluating the strain energy and stress level for elliptical-arc-fillet flexure hinges are also provided. This model can be used as a complementary model for the generalized model for conic flexure hinges.

References

1.
Howell
,
L. L.
,
Compliant Mechanisms
(
Wiley
,
New York
, 2001).
2.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
3.
Zettl
,
B.
,
Szyszkowski
,
W.
, and
Zhang
,
W. J.
, 2005, “
On Systematic Errors of Two-Dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges
,”
ASME J. Mech. Des.
,
127
, pp.
782
788
.
4.
Xu
,
W.
, and
King
,
T. G.
, 1995, “
Mechanical Amplifier Design for Piezo-Actuator Applications
,” IEE Colloquium on Innovative Actuators for Mechatronic Systems, London, U.K., 1/1-1/5.
5.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
, 1997, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.
6.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
, 2001, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(
9
), pp.
346
352
.
7.
Chen
,
G.
,
Shao
,
X.
, and
Huang
,
X.
, 2008, “
A New Generalized Model for Elliptical Arc Flexure Hinges
,”
Rev. Sci. Instrum.
,
79
(
9
),
095103
.
8.
Lobontiu
,
N.
,
Paine
,
J. S. N., O.
Malley
,
E.
, and
Samuelson
,
M.
, 2002,“
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
Precis. Eng.
,
26
(
2
), pp.
183
192
.
9.
Gao
,
P.
,
Swei
,
S. M.
, and
Yuan
,
Z. J.
, 1999, “
A New Piezodriven Precision Micropositioning Stage Utilizing Flexure Hinges
,”
Nanotechnology
,
10
, pp.
394
398
.
10.
Chu
,
C. L.
, and
Fan
,
S. H.
, 2006, “
A Novel Long-Travel Piezoelectric-Driven Linear Nanopositioning Stage
,”
Precis. Eng.
,
30
, pp.
85
95
.
11.
Liaw
,
H. C.
, and
Shirinzadeh
,
B.
, 2008, “
Robust Generalised Impedance Control of Piezo-Actuated Flexure-Based Four-Bar Mechanisms for Micro/Nano Manipulation
,”
Sens. Actuators, A
,
148
, pp.
443
453
.
12.
Han
,
C. S.
, and
Kim
,
S. H.
, 2002, “
Three-Axis Lever Actuator With Flexure Hinges for an Optical Disk System
,”
Rev. Sci. Instrum.
,
73
, pp.
3678
3686
.
13.
Choi
,
K. B.
, and
Han
,
C. S.
, 2007, “
Optimal Design of a Compliant Mechanism With Circular Notch Flexure Hinges
,”
Proc. Inst. Mech. Eng., IMechE Conf. Part C: J. Mech. Eng. Sci.
,
221
, pp.
385
392
.
14.
Tang
,
X.
,
Chen
,
I.
, and
Li
,
Q.
, 2006,
Design and Nonlinear Modeling of a Large-Displacement XYZ Flexure Parallel Mechanism With Decoupled Kinematic Structure
,”
Rev. Sci. Instrum.,
77
,
115101
.
15.
Kim
,
J. H.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
, 2004, “
Development and Optimization of 3-D Bridge-Type Hinge Mechanisms
,”
Sens. Actuators, A
,
116
, pp.
530
538
.
16.
Ryu
,
J. W.
,
Gweon
,
D. G.
, and
Moon
,
K. S.
, 1997, “
Optimal Design of a Flexure Hinge Based XY θz Wafer Stage
,”
Precis. Eng.
,
21
, pp.
18
28
.
17.
Vallance
,
R. R.
,
Haghighian
,
B.
, and
Marsh
,
E. R.
, 2008, ”
Precis. Eng.
,
32
, pp.
278
288
.
18.
Chen
,
G.
,
Liu
,
X.
,
Gao
,
H.
, and
Jia
,
J.
, 2009, “
A Generalized Model for Conic Flexure Hinges
,”
Rev. Sci. Instrum.
,
80
(
5
),
055106
.
19.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
Mechanics of Materials
(
Van Nostrand Reinhold Company
,
New York
, 1972).
20.
Chen
,
G.
, and
Howell
,
L. L.
, 2009, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
33
, pp.
268
274
.
21.
Pilkey
,
W. D.
,
Peterson,’s Stress Concentration Factors
(
Wiley
,
New York
, 1997).
You do not currently have access to this content.