The conceptual design of effective actuation mechanisms for flapping wing micro air vehicles presents considerable challenges, with competing weight, power, authority, and life cycle requirements. This work utilizes topology optimization to obtain compliant flapping mechanisms; this is a well-known tool, but the method is rarely extended to incorporate unsteady nonlinear aeroelastic physics, which must be accounted for in the design of flapping wing vehicles. Compliant mechanism topologies are specifically desired to perform two tasks: (1) propulsive thrust generation (symmetric motions of a left and a right wing) and (2) lateral roll moment generation (asymmetric motions). From an optimization standpoint, these two tasks are considered multiple load cases, implemented by scheduling the actuation applied to the mechanism’s design domain. Mechanism topologies obtained with various actuation-scheduling assumptions are provided, along with the resulting flapping wing motions and aerodynamic force/moment generation. Furthermore, it is demonstrated that both load cases may be used simultaneously for future vehicle control studies: gradual transition from forward flight into a turning maneuver, for example.

References

1.
Khatait
,
J.
,
Mukherjee
,
S.
, and
Seth
,
B.
, 2006, “
Compliant Design for Flapping Mechanism: A Minimum Torque Approach
,”
Mech. Mach. Theory
,
41
(
1
), pp.
3
16
.
2.
Yan
,
J.
,
Wood
,
R.
,
Avadhanula
,
S.
,
Sitti
,
M.
, and
Fearing
,
R.
, 2001, “
Towards Flapping Wing Control for a Micromechanical Flying Insect
,”
IEEE International Conference on Robotics and Automation
, Seoul, South Korea, May 21–26, pp. 3901–3908.
3.
Madangopal
,
R.
,
Khan
,
Z.
, and
Agrawal
,
S.
, 2005, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.
4.
Tantanawat
,
T.
, and
Kota
,
S.
, 2007, “
Design of Compliant Mechanisms for Minimizing Input Power in Dynamic Applications
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1064
1075
.
5.
Raney
,
D.
, and
Slominski
,
E.
, 2004, “
Mechanization and Control Concepts for Biologically Inspired Micro Air Vehicles
,”
J. Aircr.
,
41
(
6
), pp.
1257
1265
.
6.
Khan
,
Z.
, and
Agrawal
,
S.
, 2006, “
Design of Flapping Mechanisms Based on Transverse Bending Phenomena in Insects
,”
IEEE International Conference on Robotics and Automation
, Orlando, FL, May 15–19.
7.
Baek
,
S.
,
Ma
,
K.
, and
Fearing
,
R.
, 2009, “
Efficient Resonant Drive of Flapping-Wing Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis, MO, Oct. 10–15.
8.
Wooton
,
R.
, 2009, “
Springy Shells, Pliant Plates and Minimal Motors: Abstracting the Insect Thorax to Drive a Micro Air Vehicle
,”
Flying Insects and Robots
,
D.
Floreano
,
J.
Zufferey
,
M.
Srinivasan
, and
C.
Ellington
, eds.,
Spring-Verlag
,
Berlin
, Chap. XV.
9.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S.
, 2009, “
Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061006
.
10.
Bolsman
,
C.
,
Goosen
,
J.
, and
van Keulen
,
F.
, 2010, “
Design Overview of a Resonant Wing Actuation Mechanism for Application in Flapping Wing MAVs
,”
Int. J. Micro Air Veh.
,
1
(
4
), pp.
263
272
.
11.
Bendsøe
,
M.
, and
Sigmund
,
O.
, 2003,
Topology Optimization
,
Springer
,
Berlin, Germany
.
12.
Pederson
,
C.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
13.
Bruns
,
T.
, and
Tortorelli
,
D.
, 2001, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26
), pp.
3443
3459
.
14.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M.
, and
Wang
,
S.
, 2007, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.
15.
Deepak
,
S.
,
Dinesh
,
M.
,
Sahu
,
D.
, and
Ananthasuresh
,
G.
, 2009, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
16.
Panganiban
,
H.
,
Jang
,
G.
, and
Chung
,
T.
, 2010, “
Topology Optimization of Pressure-Actuated Compliant Mechanisms
,”
Finite Elem. Anal. Design
,
46
(
3
), pp.
238
246
.
17.
Ma
,
Z.
,
Kikuchi
,
N.
,
Cheng
,
H.
, and
Hagiwara
,
I.
, 1995, “
Topology Optimization Technique for Free Vibration Problems
,”
ASME J. Appl. Mech.
,
62
, pp.
200
207
.
18.
Min
,
S.
,
Kikuchi
,
N.
,
Park
,
Y.
,
Kim
,
S.
, and
Chang
,
S.
, 1999, “
Optimal Topology Design of Structures Under Dynamic Loads
,”
Struct. Multidiscip. Optim.
,
17
(
2
), pp.
208
218
.
19.
Tcherniak
,
D.
, 2002, “
Topology Optimization of Resonating Structures Using SIMP Method
,”
Int. J. Numer. Methods Eng.
,
54
(
11
), pp.
1605
1622
.
20.
Jensen
,
J.
, 2007, “
Topology Optimization of Dynamics Problems With Padé Approximants
,”
Int. J. Numer. Methods Eng.
,
72
, pp.
1605
1630
.
21.
Yoon
,
G.
, 2010, “
Structural Topology Optimization for Frequency Response Problem Using Model Reduction Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
1744
1763
.
22.
Yoon
,
G.
, 2010, “
Maximizing the Fundamental Frequency of Geometrically Nonlinear Structures Using the Element Connectivity Based Topology Optimization
,”
Comput. Struct.
,
88
, pp.
120
133
.
23.
Maute
,
K.
, and
Allen
,
M.
, 2004, “
Conceptual Design of Aeroelastic Structures by Topology Optimization
,”
Struct. Multidiscip. Optim.
,
27
(
1
), pp.
27
42
.
24.
Maute
,
K.
, and
Reich
,
G.
, 2006, “
Integrated Multidisciplinary Topology Optimization Approach to Adaptive Wing Design
,”
J. Aircr.
,
43
(
1
), pp.
253
263
.
25.
Stanford
,
B.
, and
Ifju
,
P.
, 2009, “
Aeroelastic Topology Optimization of Membrane Structures for Micro Air Vehicles
,”
Struct. Multidiscip. Optim.
,
38
(
3
), pp.
301
316
.
26.
Khan
,
Z.
, and
Agrawal
,
S.
, 2011, “
Optimal Hovering Kinematics of Flapping Wings for Micro Air Vehicles
,”
AIAA J.
,
49
(
2
), pp.
257
268
.
27.
Platzer
,
M.
,
Jones
,
K.
,
Young
,
J.
, and
Lai
,
J.
, 2008, “
Flapping Wing Aerodynamics: Progress and Challenges
,”
AIAA J.
,
46
(
9
), pp.
2136
2149
.
28.
Zienkiewicz
,
O.
, 1972,
The Finite Element Method
,
McGraw-Hill
,
New York
.
29.
Bruns
,
T.
, 2007, “
Topology Optimization by Penalty (TOP) Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
45
), pp.
4430
4443
.
30.
Berman
,
G.
, and
Wang
,
Z.
, 2007, “
Energy-Minimizing Kinematics in Hovering Insect Flight
,”
J. Fluid Mech.
,
582
, pp.
153
168
.
31.
Stanford
,
B.
, and
Beran
,
P.
, 2011, “
Formulation of Analytical Design Derivatives for Nonlinear Unsteady Aeroelasticity
,”
AIAA J.
,
49
(
3
), pp.
598
610
.
32.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
33.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
, 1999, “
Flapping and Flexible Wings for Biological and Micro Air Vehicles
,”
Prog. Aerosp. Sci.
,
35
(
5
), pp.
455
505
.
34.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Based Des. Struct. Mach.
,
25
(
4
), pp.
493
524
.
35.
Desmorat
,
B.
, and
Desmorat
,
R.
, 2008, “
Topology Optimization in Damage Governed Low Cycle Fatigue
,”
C. R. Mec
.,
336
(
5
), pp.
448
453
.
You do not currently have access to this content.