Topology optimization of macroperiodic structures is traditionally realized by imposing periodic constraints on the global structure, which needs to solve a fully linear system. Therefore, it usually requires a huge computational cost and massive storage requirements with the mesh refinement. This paper presents an efficient topology optimization method for periodic structures with substructuring such that a condensed linear system is to be solved. The macrostructure is identically partitioned into a number of scale-related substructures represented by the zero contour of a level set function (LSF). Only a representative substructure is optimized for the global periodic structures. To accelerate the finite element analysis (FEA) procedure of the periodic structures, static condensation is adopted for repeated common substructures. The macrostructure with reduced number of degree of freedoms (DOFs) is obtained by assembling all the condensed substructures together. Solving a fully linear system is divided into solving a condensed linear system and parallel recovery of substructural displacement fields. The design efficiency is therefore significantly improved. With this proposed method, people can design scale-related periodic structures with a sufficiently large number of unit cells. The structural performance at a specified scale can also be calculated without any approximations. What’s more, perfect connectivity between different optimized unit cells is guaranteed. Topology optimization of periodic, layerwise periodic, and graded layerwise periodic structures are investigated to verify the efficiency and effectiveness of the presented method.

References

1.
Zuo
,
Z. H.
,
Xie
,
Y. M.
, and
Huang
,
X.
,
2011
, “
Reinventing the Wheel
,”
ASME J. Mech. Des.
,
133
(
2
),
024502
.
2.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
),
081008
.
3.
Aremu
,
A.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R. J.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
4.
Sigmund
,
O.
,
1994
, “
Materials with Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids. Struct.
,
31
(
17
), pp.
2313
2329
.
5.
Cadman
,
J. E.
,
Zhou
,
S.
,
Chen
,
Y.
, and
Li
,
Q.
,
2013
, “
On Design of Multi-Functional Microstructural Materials
,”
J. Mater. Sci.
,
48
(
1
), pp.
51
66
.
6.
Zhang
,
W.
, and
Sun
,
S.
,
2006
, “
Scale-Related Topology Optimization of Cellular Materials and Structures
,”
Int. J. Numer. Methods Eng.
,
68
(
9
), pp.
993
1011
.
7.
Huang
,
X.
, and
Xie
,
Y.
,
2008
, “
Optimal Design of Periodic Structures Using Evolutionary Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
36
(
6
), pp.
597
606
.
8.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids.
,
45
(
6
), pp.
1037
1067
.
9.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
10.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization i-Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
11.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
12.
Xia
,
L.
, and
Breitkopf
,
P.
,
2015
, “
Design of Materials Using Topology Optimization and Energy-Based Homogenization Approach in Matlab
,”
Struct. Multidiscipl. Optim.
,
52
(
6
), pp.
1229
1241
.
13.
Wang
,
Y.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Kang
,
Z.
,
2014
, “
Topological Shape Optimization of Microstructural Metamaterials Using a Level Set Method
,”
Comput. Mater. Sci.
,
87
, pp.
178
186
.
14.
Clausen
,
A.
,
Wang
,
F.
,
Jensen
,
J. S.
,
Sigmund
,
O.
, and
Lewis
,
J. A.
,
2015
, “
Topology Optimized Architectures With Programmable Poisson’s Ratio Over Large Deformations
,”
Adv. Mater.
,
27
(
37
), pp.
5523
5527
.
15.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials using a Reconciled Level Set Method
,”
Comput. Aided Des.
,
83
, pp.
15
32
.
16.
Guest
,
J. K.
, and
Prévost
,
J. H.
,
2007
, “
Design of Maximum Permeability Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
1006
1017
.
17.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsoe
,
M.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscipl. Optim.
,
24
(
1
), pp.
1
10
.
18.
Liu
,
L.
,
Yan
,
J.
, and
Cheng
,
G.
,
2008
, “
Optimum Structure With Homogeneous Optimum Truss-Like Material
,”
Comput. Struct.
,
86
(
13–14
), pp.
1417
1425
.
19.
Huang
,
X.
,
Zhou
,
S.
,
Xie
,
Y.
, and
Li
,
Q.
,
2013
, “
Topology Optimization of Microstructures of Cellular Materials and Composites for Macrostructures
,”
Comput. Mater. Sci.
,
67
, pp.
397
407
.
20.
Xia
,
L.
, and
Breitkopf
,
P.
,
2014
, “
Concurrent Topology Optimization Design of Material and Structure Within Fe2 Nonlinear Multiscale Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
278
, pp.
524
542
.
21.
Xia
,
L.
, and
Breitkopf
,
P.
,
2015
, “
Multiscale Structural Topology Optimization with an Approximate Constitutive Model for Local Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
147
167
.
22.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1267
1281
.
23.
Wang
,
Y.
,
Wang
,
M. Y.
, and
Chen
,
F.
,
2016
, “
Structure-Material Integrated Design by Level Sets
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1145
1156
.
24.
Yan
,
J.
,
Guo
,
X.
, and
Cheng
,
G.
,
2016
, “
Multi-Scale Concurrent Material and Structural Design under Mechanical and Thermal Loads
,”
Comput. Mech.
,
57
(
3
), pp.
437
446
.
25.
Da
,
D.
,
Cui
,
X.
,
Long
,
K.
, and
Li
,
G.
,
2017
, “
Concurrent Topological Design of Composite Structures and the Underlying Multi-Phase Materials
,”
Comput. Struct.
,
179
, pp.
1
14
.
26.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Walker
,
P.
,
2018
, “
Topology Optimization for Functionally Graded Cellular Composites With Metamaterials by Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
328
, pp.
340
364
.
27.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Qin
,
Q.
,
2018
, “
Topology Optimization for Concurrent Design of Structures With Multi-Patch Microstructures by Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
536
561
.
28.
Fu
,
J.
,
Li
,
H.
,
Gao
,
L.
, and
Xiao
,
M.
,
2019
, “
Design of Shell-Infill Structures by a Multiscale Level Set Topology Optimization Method
,”
Comput. Struct.
,
212
, pp.
162
172
.
29.
Zhu
,
Y.
,
Li
,
S.
,
Du
,
Z.
,
Liu
,
C.
,
Guo
,
X.
, and
Zhang
,
W.
,
2019
, “
A Novel Asymptotic-Analysis-Based Homogenisation Approach towards Fast Design of Infill Graded Microstructures
,”
J. Mech. Phys. Solids.
,
124
, pp.
612
633
.
30.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
),
111417
.
31.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
.
32.
Zuo
,
Z. H.
,
Huang
,
X.
,
Yang
,
X.
,
Rong
,
J. H.
, and
Xie
,
Y. M.
,
2013
, “
Comparing Optimal Material Microstructures With Optimal Periodic Structures
,”
Comput. Mater. Sci.
,
69
, pp.
137
147
.
33.
Yvonnet
,
J.
, and
Bonnet
,
G.
,
2014
, “
A Consistent Nonlocal Scheme Based on Filters for the Homogenization of Heterogeneous Linear Materials With Non-Separated Scales
,”
Int. J. Solids. Struct.
,
51
(
1
), pp.
196
209
.
34.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimisation of Manufacturable Microstructural Details Without Length Scale Separation Using a Spectral Coarse Basis Preconditioner
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
156
182
.
35.
Xie
,
Y. M.
,
Zuo
,
Z. H.
,
Huang
,
X.
, and
Rong
,
J. H.
,
2012
, “
Convergence of Topological Patterns of Optimal Periodic Structures Under Multiple Scales
,”
Struct. Multidiscipl. Optim.
,
46
(
1
), pp.
41
50
.
36.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
John Wiley & Sons
,
New York
.
37.
Xia
,
L.
,
Xia
,
Q.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2018
, “
Bi-Directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review
,”
Arch. Comput. Methods Eng.
,
25
(
2
), pp.
437
478
.
38.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
39.
Groen
,
J. P.
,
Langelaar
,
M.
,
Sigmund
,
O.
, and
Ruess
,
M.
,
2017
, “
Higher-Order Multi-Resolution Topology Optimization Using the Finite Cell Method
,”
Int. J. Numer. Methods Eng.
,
110
(
10
), pp.
903
920
.
40.
Borrvall
,
T.
, and
Petersson
,
J.
,
2001
, “
Large-Scale Topology Optimization in 3d Using Parallel Computing
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
46–47
), pp.
6201
6229
.
41.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
42.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
43.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
44.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
45.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
46.
Luo
,
J.
,
Luo
,
Z.
,
Chen
,
L.
,
Tong
,
L.
, and
Wang
,
M. Y.
,
2008
, “
A Semi-Implicit Level Set Method for Structural Shape and Topology Optimization
,”
J. Comput. Phys.
,
227
(
11
), pp.
5561
5581
.
47.
Xia
,
Q.
,
Wang
,
M. Y.
,
Wang
,
S.
, and
Chen
,
S.
,
2006
, “
Semi-Lagrange Method for Level-Set-Based Structural Topology and Shape Optimization
,”
Struct. Multidiscipl. Optim.
,
31
(
6
), pp.
419
429
.
48.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2015
, “
Introducing the Sequential Linear Programming Level-Set Method for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
631
643
.
49.
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2011
, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects
,”
ASME J. Mech. Des.
,
133
(
3
),
031011
.
50.
Zhu
,
B.
,
Wang
,
R.
,
Li
,
H.
, and
Zhang
,
X.
,
2018
, “
A Level Set Method With a Bounded Diffusion for Structural Topology Optimization
,”
ASME J. Mech. Des.
,
140
(
7
),
071402
.
51.
Luo
,
Z.
,
Tong
,
L.
, and
Kang
,
Z.
,
2009
, “
A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions
,”
Comput. Struct.
,
87
(
7–8
), pp.
425
434
.
52.
Luo
,
Z.
,
Tong
,
L.
, and
Ma
,
H.
,
2009
, “
Shape and Topology Optimization for Electrothermomechanical Microactuators Using Level Set Methods
,”
J. Comput. Phys.
,
228
(
9
), pp.
3173
3181
.
53.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically a New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
),
081009
.
54.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
55.
Liu
,
C.
,
Zhu
,
Y.
,
Sun
,
Z.
,
Li
,
D.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2018
, “
An Efficient Moving Morphable Component (MMC)-Based Approach for Multi-Resolution Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
6
), pp.
2455
2479
.
56.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin/Vienna/New York
.
57.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
58.
Wendland
,
H.
,
2004
,
Scattered Data Approximation
, Vol.
17
.
Cambridge University Press
,
Cambridge, England/London/New York
.
59.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in Matlab using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
.
60.
Wu
,
Z.
,
Xia
,
L.
,
Wang
,
S.
, and
Shi
,
T.
,
2019
, “
Topology Optimization of Hierarchical Lattice Structures With Substructuring
,”
Comput. Methods Appl. Mech. Eng.
,
345
(
1
), pp.
602
617
.
You do not currently have access to this content.