Abstract

The computational cost of traditional gradient-based topology optimization is amplified for multidisciplinary design optimization (MDO) problems, most notably when coupling between physics disciplines is accounted for. To alleviate this, we investigate new methods and applications of generative adversarial networks (GANs) as a surrogate for MDO. Accepting physical fields from each physics discipline as input, the trained network produces an optimal design that closely resembles that of the iterative gradient-based approach. With this model as a baseline, we introduce a novel architecture that performs physics-based design enhancement of optimal single-physics designs to produce multiphysics designs. By providing the network with boundary conditions from a secondary physics discipline, we obtain multiphysics structures while avoiding the need for costly coupled multiphysics analysis, thereby generating significant savings in computational effort. We demonstrate our approach by designing a series of structures optimized for both thermal and elastic performance. With the physics-based design enhancement GAN, we obtain thermoelastic structures that outperform those produced by the baseline multiphysics GAN architecture.

References

1.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
2.
Wu
,
T.
, and
Tovar
,
A.
,
2019
, “
Multiscale, Thermomechanical Topology Optimization of Self-Supporting Cellular Structures for Porous Injection Molds
,”
Rapid Prototyp. J.
,
25
(
9
), pp.
1482
1492
.
3.
Thurier
,
P. F.
,
2014
, “
A Two-Material Topology Optimization Method for the Design of a Passive Thermal Control Interface
,” M.S. thesis,
The Pennsylvania State University
,
State College, PA
.
4.
Gao
,
T.
,
Zhang
,
W.
,
Zhu
,
J.
,
Xu
,
Y.
, and
Bassir
,
D. H.
,
2008
, “
Topology Optimization of Heat Conduction Problem Involving Design-Dependent Heat Load Effect
,”
Finite Elem. Anal. Des.
,
44
(
14
), pp.
805
813
.
5.
Kögl
,
M.
, and
Silva
,
E. C.
,
2005
, “
Topology Optimization of Smart Structures: Design of Piezoelectric Plate and Shell Actuators
,”
Smart Mater. Struct.
,
14
(
2
), p.
387
.
6.
James
,
K. A.
,
Kennedy
,
G. J.
, and
Martins
,
J. R.
,
2014
, “
Concurrent Aerostructural Topology Optimization of a Wing Box
,”
Comput. Struct.
,
134
, pp.
1
17
.
7.
James
,
K.
,
2012
, “
Aerostructural Shape and Topology Optimization of Aircraft Wings
.”
University of Toronto
,
Canada
.
8.
Gomes
,
P.
, and
Palacios
,
R.
,
2020
, “
Aerodynamic Driven Multidisciplinary Topology Optimization of Compliant Airfoils
,”
Struct. Multidiscip. Optim.
,
62
(
4
), pp.
2117
2130
.
9.
Bhattacharyya
,
A.
,
Conlan-Smith
,
C.
, and
James
,
K. A.
,
2017
, “
Topology Optimization of a Bi-Stable Airfoil Using Nonlinear Elasticity
.”
10.
Wen
,
H.
, and
Tu
,
Z.
,
2021
, “
Optimal Design of Liquid-Cooled Plates for Lithium-Ion Batteries Using Multi-Objective Topology Optimization
,”
J. Thermophys. Heat Transfer
,
36
(
3
), pp.
534
543
.
11.
Kambampati
,
S.
,
Gray
,
J. S.
, and
Kim
,
H. A.
,
2021
, “
Level Set Topology Optimization of Load Carrying Battery Packs
,”
Int. J. Heat Mass Transfer
,
177
, p.
121570
.
12.
Deng
,
Y.
, and
Korvink
,
J. G.
,
2016
, “
Topology Optimization for Three-Dimensional Electromagnetic Waves Using an Edge Element-Based Finite-Element Method
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2189
), pp.
1
19
.
13.
Sanogo
,
S.
, and
Messine
,
F.
,
2018
, “
Topology Optimization in Electromagnetism Using Simp Method: Issues of Material Interpolation Schemes
,”
COMPEL: Int. J. Comput. Math. Electrical Elect. Eng.
,
37
(
6
), pp.
2138
2157
.
14.
Gibert Martínez
,
I.
,
Afonso
,
F.
,
Rodrigues
,
S.
, and
Lau
,
F.
,
2021
, “
A Sequential Approach for Aerodynamic Shape Optimization With Topology Optimization of Airfoils
,”
Math. Comput. Appl.
,
26
(
2
), p.
34
.
15.
Kang
,
Z.
, and
James
,
K. A.
,
2022
, “
Multiphysics Design of Programmable Shape-Memory Alloy-Based Smart Structures Via Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), pp.
1
31
.
16.
Abueidda
,
D. W.
,
Kang
,
Z.
,
Koric
,
S.
,
James
,
K. A.
, and
Jasiuk
,
I. M.
,
2021
, “
Topology Optimization for Three-Dimensional Elastoplastic Architected Materials Using a Path-Dependent Adjoint Method
,”
Int. J. Numer. Meth. Eng.
,
122
(
8
), pp.
1889
1910
.
17.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al.,
2019
, “Pytorch: An Imperative Style, High-Performance Deep Learning Library,”
Advances in Neural Information Processing Systems 32
,
Wallach
,
H.
,
Larochelle
,
H.
,
Beygelzimer
,
A.
,
d’Alché-Buc
,
F.
,
Fox
,
E.
,
Garnett
,
R.
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
8024
8035
.
18.
Fukushima
,
K.
,
1982
, “
Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition Unaffected by Shift in Position
,”
Biol. Cybern.
,
36
(
4
), pp.
193
202
.
19.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
20.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “Imagenet Classification With Deep Convolutional Neural Networks,”
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of A Meeting Held
,
P. L.
Bartlett
,
F. C. N.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
,
K. Q.
Weinberger
, eds.,
Lake Tahoe, NV
,
Dec. 3–6
, pp.
1106
1114
.
21.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A. C.
, and
Bengio
,
Y.
,
2014
, “Generative Adversarial Nets,”
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014
,
Montreal, Canada
,
Dec. 8–13
,
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N. D.
Lawrence
, and
K. Q.
Weinberger
, eds.,
Montreal, Quebec, Canada
, pp.
2672
2680
.
22.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
,
Las Vegas, NV
,
June 27–30
,
IEEE Computer Society
, pp.
770
778
.
23.
Ulu
,
E.
,
Zhang
,
R.
, and
Kara
,
L. B.
,
2016
, “
A Data-Driven Investigation and Estimation of Optimal Topologies Under Variable Loading Configurations
,”
Comput. Meth. Biomech. Biomed. Eng.: Imag. Visualiz.
,
4
(
2
), pp.
61
72
.
24.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3D Topology Optimization Using Convolutional Neural Networks
,” preprint
arXiv:1808.07440
. https://arxiv.org/abs/1808.07440
25.
Rawat
,
S.
, and
Shen
,
M.-H. H.
,
2019
, “
A Novel Topology Optimization Approach Using Conditional Deep Learning
,” preprint
arXiv:1901.04859
. https://arxiv.org/abs/1901.04859
26.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
27.
Li
,
B.
,
Huang
,
C.
,
Li
,
X.
,
Zheng
,
S.
, and
Hong
,
J.
,
2019
, “
Non-Iterative Structural Topology Optimization Using Deep Learning
,”
Comput.-Aid Des.
,
115
, pp.
172
180
.
28.
Gladstone
,
R. J.
,
Nabian
,
M. A.
,
Keshavarzzadeh
,
V.
, and
Meidani
,
H.
,
2021
, “
Robust Topology Optimization Using Variational Autoencoders
,” preprint
arXiv:2107.10661
. https://arxiv.org/abs/2107.10661
29.
Guo
,
T.
,
Lohan
,
D. J.
,
Cang
,
R.
,
Ren
,
M. Y.
, and
Allison
,
J. T.
,
2018
, “
An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer
.”
30.
Vulimiri
,
P. S.
,
Deng
,
H.
,
Dugast
,
F.
,
Zhang
,
X.
, and
To
,
A. C.
,
2021
, “
Integrating Geometric Data Into Topology Optimization Via Neural Style Transfer
,”
Materials
,
14
(
16
), p.
4551
.
31.
Wang
,
Y.
,
Du
,
W.
,
Wang
,
H.
, and
Zhao
,
Y.
,
2021
, “
Intelligent Generation Method of Innovative Structures Based on Topology Optimization and Deep Learning
,”
Materials
,
14
(
24
), p.
7680
.
32.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
33.
Gatys
,
L. A.
,
Ecker
,
A. S.
, and
Bethge
,
M.
,
2016
, “
A Neural Algorithm of Artistic Style
,”
J. Vis.
,
16
(
12
), p. 326.
34.
Ulyanov
,
D.
,
Lebedev
,
V.
,
Vedaldi
,
A.
, and
Lempitsky
,
V.
,
2016
, “
Texture Networks: Feed-Forward Synthesis of Textures and Stylized Images
,”
Proceedings of the 33rd International Conference on International Conference on Machine Learning, Volume 48
,
New York
,
June 9–14
, pp.
1349
1357
.
35.
Jing
,
Y.
,
Yang
,
Y.
,
Feng
,
Z.
,
Ye
,
J.
,
Yu
,
Y.
, and
Song
,
M.
,
2019
, “
Neural Style Transfer: A Review
,”
IEEE Trans. Visualiz. Comput. Grap.
,
26
(
11
), pp.
3365
3385
.
36.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in Matlab Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
.
37.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
New York
.
38.
Rozvany
,
G.
,
2000
, “
The SIMP Method in Topology Optimization-Theoretical Background, Advantages and New Applications
,”
8th Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8
,
American Institute of Aeronautics & Astronautics (AIAA)
, p.
4738
.
39.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Archive Appl. Mech.
,
69
(
9
), pp.
635
654
.
40.
Gui
,
J.
,
Sun
,
Z.
,
Wen
,
Y.
,
Tao
,
D.
, and
Ye
,
J.
,
2021
, “
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
,”
IEEE Trans. Knowl. Data Eng
.
41.
Aggarwal
,
A.
,
Mittal
,
M.
, and
Battineni
,
G.
,
2021
, “
Generative Adversarial Network: An Overview of Theory and Applications
,”
Int. J. Inform. Manage. Data Insight.
,
1
(
1
), p.
100004
.
42.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,” preprint
arXiv:1411.1784
. https://arxiv.org/abs/1411.1784
43.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
1125
1134
.
44.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Munich, Germany
,
Oct. 5–9
,
Springer
, pp.
234
241
.
45.
Han
,
Z.
, and
De
,
S.
,
2019
, “
A Deep Learning-Based Hybrid Approach for the Solution of Multiphysics Problems in Electrosurgery
,”
Comput. Meth. Appl. Mech. Eng.
,
357
, p.
112603
.
46.
Tian
,
P.
,
Liu
,
X.
,
Luo
,
K.
,
Li
,
H.
, and
Wang
,
Y.
,
2021
, “
Deep Learning From Three-Dimensional Multiphysics Simulation in Operational Optimization and Control of Polymer Electrolyte Membrane Fuel Cell for Maximum Power
,”
Appl. Energy
,
288
, p.
116632
.
47.
Lu
,
H.
,
Ermakova
,
D.
,
Wainwright
,
H. M.
,
Zheng
,
L.
, and
Tartakovsky
,
D. M.
,
2021
, “
Data-Informed Emulators for Multi-Physics Simulations
,”
J. Mach. Learn. Model. Comput.
,
2
(
2
), pp.
33
54
.
48.
El Haber
,
G.
,
Viquerat
,
J.
,
Larcher
,
A.
,
Ryckelynck
,
D.
,
Alves
,
J.
,
Patil
,
A.
, and
Hachem
,
E.
,
2022
, “
Deep Learning Model to Assist Multiphysics Conjugate Problems
,”
Phys. Fluids
,
34
(
1
), p.
015131
.
49.
Ren
,
T.
,
Wang
,
L.
,
Chang
,
C.
, and
Li
,
X.
,
2020
, “
Machine Learning-Assisted Multiphysics Coupling Performance Optimization in a Photocatalytic Hydrogen Production System
,”
Energy Convers. Manage.
,
216
, p.
112935
.
50.
Alizadeh
,
R.
,
Abad
,
J. M. N.
,
Ameri
,
A.
,
Mohebbi
,
M. R.
,
Mehdizadeh
,
A.
,
Zhao
,
D.
, and
Karimi
,
N.
,
2021
, “
A Machine Learning Approach to the Prediction of Transport and Thermodynamic Processes in Multiphysics Systems-Heat Transfer in a Hybrid Nanofluid Flow in Porous Media
,”
J. Taiwan Inst. Chem. Eng.
,
124
, pp.
290
306
.
51.
Alexiadis
,
A.
,
2019
, “
Deep Multiphysics and Particle-Neuron Duality: A Computational Framework Coupling (discrete) Multiphysics and Deep Learning
,”
Appl. Sci.
,
9
(
24
), p.
5369
.
52.
Liu
,
D.
,
2021
, “
Investigation of Process-Structure Relationship for Additive Manufacturing With Multiphysics Simulation and Physics-Constrained Machine Learning
,” Ph.D. thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
53.
Boonma
,
K.
,
Mesgarpour
,
M.
,
NajmAbad
,
J. M.
,
Alizadeh
,
R.
,
Mahian
,
O.
,
Dalkılıç
,
A. S.
,
Ahn
,
H. S.
, and
Wongwises
,
S.
,
2022
, “
Prediction of Battery Thermal Behaviour in the Presence of a Constructal Theory-Based Heat Pipe (cbhp): A Multiphysics Model and Pattern-Based Machine Learning Approach
,”
J. Energy Storage
,
48
, p.
103963
.
54.
Ahmed
,
S. E.
,
San
,
O.
,
Kara
,
K.
,
Younis
,
R.
, and
Rasheed
,
A.
,
2020
, “
Interface Learning of Multiphysics and Multiscale Systems
,”
Phys. Rev. E
,
102
(
5
), p.
053304
.
55.
Alexiadis
,
A.
,
2019
, “
Deep Multiphysics: Coupling Discrete Multiphysics With Machine Learning to Attain Self-Learning In-Silico Models Replicating Human Physiology
,”
Artif. Intell. Med.
,
98
, pp.
27
34
.
56.
Kazemi
,
H.
,
Seepersad
,
C.
, and
Kim
,
H. A.
,
2022
, “
Topology Optimization Integrated Deep Learning for Multiphysics Problems
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
0802
.
57.
Johnson
,
J.
,
Alahi
,
A.
, and
Fei-Fei
,
L.
,
2016
, “
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
,”
European Conference on Computer Vision
,
Springer
, pp.
694
711
.
58.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “Rectified Linear Units Improve Restricted Boltzmann Machines,”
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
,
Haifa, Israel
,
June 21–24
,
Fürnkranz
,
J.
,
Joachims
,
T.
, eds.,
Omnipress
, pp.
807
814
.
59.
Xu
,
B.
,
Wang
,
N.
,
Chen
,
T.
, and
Li
,
M.
,
2015
, “
Empirical Evaluation of Rectified Activations in Convolutional Network
,” preprint
arXiv:1505.00853
. https://arxiv.org/abs/1505.00853
60.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings
,
San Diego, CA
,
May 7–9
.
61.
Bishop
,
C. M.
, and
Nasrabadi
,
N. M.
,
2006
,
Pattern Recognition and Machine Learning.
62.
Bronstein
,
M. M.
,
Bruna
,
J.
,
Cohen
,
T.
, and
Veličković
,
P.
,
2021
, “
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
,” preprint
arXiv:2104.13478
. https://arxiv.org/abs/2104.13478
63.
Chen
,
H.
, and
Liu
,
X.
,
2021
, “
Geometry Enhanced Generative Adversarial Networks for Random Heterogeneous Material Representation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
85383
,
American Society of Mechanical Engineers
, p.
V03AT03A020
.
64.
Shit
,
S.
,
Paetzold
,
J. C.
,
Sekuboyina
,
A.
,
Ezhov
,
I.
,
Unger
,
A.
,
Zhylka
,
A.
,
Pluim
,
J. P.
,
Bauer
,
U.
, and
Menze
,
B. H.
,
2021
, “
cldice-a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Nashville, TN
,
June 20–25
, pp.
16560
16569
.
65.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2022
, “
GANTL: Toward Practical and Real-time Topology Optimization With Conditional Generative Adversarial Networks and Transfer Learning
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021711
. .
66.
Balestriero
,
R.
,
Pesenti
,
J.
, and
LeCun
,
Y.
,
2021
, “
Learning in High Dimension Always Amounts to Extrapolation
,” preprint
arXiv:2110.09485
. https://arxiv.org/abs/2110.09485
67.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2021
, “
Real-Time Topology Optimization in 3D Via Deep Transfer Learning
,”
Comput.-Aid Des.
,
135
, p.
103014
.
You do not currently have access to this content.