Abstract

Conceptual design is a pivotal phase of product design and development, encompassing user requirement exploration and informed solution generation. Recent generative models with their powerful content generation capabilities have been applied to conceptual design to support designers’ ideation. However, the lack of transparency in their generation process and the shallow nature of their generated solutions constrain their performance in complex conceptual design tasks. In this study, we first introduce a conceptual design generation approach that combines generative models with classic design theory. This approach decomposes the conceptual design task based on design process and design attributes, and uses the who, what, where, when, why, how (5W1H) method, function-behavior-structure model, and Kansei Engineering to guide generative models to generate conceptual design solutions through multi-step reasoning. Then we present an interactive system using a mind-map layout to visualize multi-step reasoning, called DesignFusion. This empowers designers to track the generation process and control inputs/outputs at each reasoning step. Two user studies show that our approach significantly enhances the quality of generated design solutions and enriches designer experience in human–artificial intelligence co-creation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Jin
,
J.
,
Liu
,
Y.
,
Ji
,
P.
, and
Kwong
,
C. K.
,
2018
, “
Review on Recent Advances in Information Mining From Big Consumer Opinion Data for Product Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
010801
.
2.
Smith
,
G. C.
, and
Smith
,
S.
,
2012
, “
Latent Semantic Engineering – A New Conceptual User-Centered Design Approach
,”
Adv. Eng. Inform.
,
26
(
2
), pp.
456
473
.
3.
Ulrich
,
K. T.
,
Eppinger
,
S. D.
, and
Yang
,
M. C.
,
2008
,
Product Design and Development
, Vol.
4
.
McGraw-Hill Higher Education
,
Boston, MA
.
4.
French
,
M. J.
,
1985
,
Conceptual Design for Engineers
,
Springer
,
London
.
5.
Andreasen
,
M. M.
,
Hansen
,
C. T.
, and
Cash
,
P.
,
2015
,
Conceptual Design
,
Springer
,
Cham, Switzerland
.
6.
Cheligeer
,
C.
,
Yang
,
J.
,
Bayatpour
,
A.
,
Miklin
,
A.
,
Dufresne
,
S.
,
Lin
,
L.
,
Bhuiyan
,
N.
, and
Zeng
,
Y.
,
2023
, “
A Hybrid Semantic Networks Construction Framework for Engineering Design
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041405
.
7.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2019
, “
Computer-Aided Design Ideation Using Innogps
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2A: 45th Design Automation Conference,
American Society of Mechanical Engineers
, p.
V02AT03A011
.
8.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
Technet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
9.
Zuo
,
H.
,
Jing
,
Q.
,
Song
,
T.
,
Sun
,
L.
,
Childs
,
P.
, and
Chen
,
L.
,
2022
, “
Wikilink: An Encyclopedia-Based Semantic Network for Design Creativity
,”
J. Intell.
,
10
(
4
), p.
103
.
10.
OpenAI
, Introducing ChatGPT, November. https://openai.com/blog/chatgpt,
2022
.
11.
Brown
,
T.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P.
, and
Neelakantan
,
A.
,
2020
, “Language Models Are Few-Shot Learners,”
Advances in Neural Information Processing Systems
,
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M. F.
Balcan
, and
H.
Lin
, eds., Vol.
33
,
Curran Associates, Inc.
,
New York
, pp.
1877
1901
.
12.
Touvron
,
H.
,
Martin
,
L.
,
Stone
,
K.
,
Albert
,
P.
,
Almahairi
,
A.
,
Babaei
,
Y.
,
Bashlykov
,
N.
, et al.,
2023
, “Llama 2: Open Foundation and Fine-Tuned Chat Models”. arXiv preprint arXiv:2307.09288.
13.
Bouschery
,
S. G.
,
Blazevic
,
V.
, and
Piller
,
F. T.
,
2023
, “
Augmenting Human Innovation Teams With Artificial Intelligence: Exploring Transformer-Based Language Models
,”
J. Prod. Innov. Manage.
,
40
(
2
), pp.
139
153
.
14.
Qiu
,
Y.
, and
Jin
,
Y.
,
2023
, “
Document Understanding-Based Design Support: Application of Language Model for Design Knowledge Extraction
,”
ASME J. Mech. Des.
,
145
(
12
), p.
121401
.
15.
Zhu
,
Q.
,
Zhang
,
X.
, and
Luo
,
J.
,
2023
, “
Biologically Inspired Design Concept Generation Using Generative Pre-Trained Transformers
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041409
.
16.
Zhu
,
Q.
, and
Luo
,
J.
,
2022
, “
Generative Pre-Trained Transformer for Design Concept Generation: An Exploration
,”
Proc. Des. Soc.
,
2
(
DESIGN2022
), pp.
1825
1834
.
17.
Rombach
,
R.
,
Blattmann
,
A.
,
Lorenz
,
D.
,
Esser
,
P.
, and
Ommer
,
B.
,
2022
, “
High-Resolution Image Synthesis With Latent Diffusion Models
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
New Orleans, LA
,
June
, pp.
10684
10695
.
18.
Ramesh
,
A.
,
Dhariwal
,
P.
,
Nichol
,
A.
,
Chu
,
C.
, and
Chen
,
M.
,
2022
, “
Hierarchical Text-Conditional Image Generation With Clip Latents
”. arXiv preprint arXiv:2204.06125,
1
(
2
), p.
3
.
19.
Liu
,
V.
,
Vermeulen
,
J.
,
Fitzmaurice
,
G.
, and
Matejka
,
J.
,
2023
, “
3DALL-E: Integrating Text-to-Image AI in 3D Design Workflows
,”
Proceedings of the 2023 ACM Designing Interactive Systems Conference
,
Pittsburgh, PA
,
July
, pp.
1955
1977
.
20.
Li
,
X.
,
Wang
,
Y.
, and
Sha
,
Z.
,
2023
, “
Deep Learning Methods of Cross-Modal Tasks for Conceptual Design of Product Shapes: A Review
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041401
.
21.
Cross
,
N.
,
2006
,
Designerly Ways of Knowing
,
Springer
,
London
.
22.
Bender
,
E. M.
, and
Koller
,
A.
,
2020
, “
Climbing Towards NLU: On Meaning, Form, and Understanding in the Age of Data
,”
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
,
Online
,
July
, pp.
5185
5198
.
23.
Wu
,
T.
,
Terry
,
M.
, and
Cai
,
C. J.
,
2022
, “
AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 30–May 5
.
24.
Khot
,
T.
,
Trivedi
,
H.
,
Finlayson
,
M.
,
Fu
,
Y.
,
Richardson
,
K.
,
Clark
,
P.
, and
Sabharwal
,
A.
,
2023
, “
Decomposed Prompting: A Modular Approach for Solving Complex Tasks
,”
The Eleventh International Conference on Learning Representations
,
Kigali, Rwanda
,
May 1–5
.
25.
Tholander
,
J.
, and
Jonsson
,
M.
,
2023
, “
Design Ideation With AI - Sketching, Thinking and Talking With Generative Machine Learning Models
,”
Proceedings of the 2023 ACM Designing Interactive Systems Conference
,
Pittsburgh, PA
,
July
, pp.
1930
1940
.
26.
Bernal
,
M.
,
Haymaker
,
J. R.
, and
Eastman
,
C.
,
2015
, “
On the Role of Computational Support for Designers in Action
,”
Des. Stud.
,
41
(
Part B
), pp.
163
182
.
27.
Gmeiner
,
F.
,
Yang
,
H.
,
Yao
,
L.
,
Holstein
,
K.
, and
Martelaro
,
N.
,
2023
, “
Exploring Challenges and Opportunities to Support Designers in Learning to Co-Create With AI-Based Manufacturing Design Tools
,”
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
,
Hamburg, Germany
,
April
.
28.
Liu
,
V.
, and
Chilton
,
L. B.
,
2022
, “
Design Guidelines for Prompt Engineering Text-to-Image Generative Models
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA, USA
,
April
.
29.
Jonsson
,
M.
, and
Tholander
,
J.
,
2022
, “
Cracking the Code: Co-Coding With AI in Creative Programming Education
,”
Proceedings of the 14th Conference on Creativity and Cognition
,
Venice, Italy
,
June
, pp.
5
14
.
30.
van Boeijen
,
A.
,
Daalhuizen
,
J.
,
van der Schoor
,
R.
, and
Zijlstra
,
J.
,
2014
, Delft Design Guide: Design Strategies and Methods.
31.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2014
,
The Function-Behaviour-Structure Ontology of Design
,
Springer London
,
London
, pp.
263
283
.
32.
Nagamachi
,
M.
,
1995
, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergon.
,
15
(
1
), pp.
3
11
.
33.
O’Donovan
,
B.
,
Eckert
,
C.
,
Clarkson
,
J.
, and
Browning
,
T. R.
,
2005
, “Design Planning and Modelling,”
Design Process Improvement: A Review of Current Practice
,
J.
Clarkson
and
C.
Eckert
, eds.,
Springer
,
London
, pp.
60
87
.
34.
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2018
, “
Process Models in Design and Development
,”
Res. Eng. Des.
,
29
(
2
), pp.
161
202
.
35.
Al’tshuller
,
G.
,
Shulyak
,
L.
, and
Rodman
,
S.
,
1999
, The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center.
36.
Hatchuel
,
A.
, and
Weil
,
B.
,
2003
, “
A New Approach of Innovative Design: An Introduction to CK Theory
,”
The 14th International Conference on Engineering Design
,
Stockholm, Sweden
,
Aug. 19–21
.
37.
Hatchuel
,
A.
, and
Weil
,
B.
,
2009
, “
Ck Design Theory: An Advanced Formulation
,”
Res. Eng. Des.
,
19
(
4
), pp.
181
192
.
38.
Maher
,
M. L.
, and
Poon
,
J.
,
1996
, “
Modeling Design Exploration as Co-Evolution
,”
Comput.-Aid. Civil Infrastruct. Eng.
,
11
(
3
), pp.
195
209
.
39.
Zwicky
,
F.
,
1967
, “The Morphological Approach to Discovery, Invention, Research and Construction,”
New Methods of Thought and Procedure
,
F.
Zwicky
, and
A. G.
Wilson
, eds.,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
, pp.
273
297
.
40.
Jin
,
J.
,
Jia
,
D.
, and
Chen
,
K.
,
2022
, “
Mining Online Reviews With a Kansei-Integrated Kano Model for Innovative Product Design
,”
Int. J. Prod. Res.
,
60
(
22
), pp.
6708
6727
.
41.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Chi
,
E.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2022
, “Chain-of-Thought Prompting Elicits Reasoning in Large LanguageModels,”
Advances in Neural Information Processing Systems
,
S.
Koyejo
,
S.
Mohamed
,
A.
Agarwal
,
D.
Belgrave
,
K.
Cho
, and
A.
Oh
, eds., Vol.
35
,
Curran Associates Inc.
,
New York
, pp.
24824
24837
.
42.
Weng
,
S.
,
Zhang
,
P.
,
Chang
,
Z.
,
Wang
,
X.
,
Li
,
S.
, and
Shi
,
B.
,
2023
, “
Affective Image Filter: Reflecting Emotions From Text to Images
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
,
Paris, France
,
October
, pp.
10810
10819
.
43.
Crossan
,
M. M.
,
Lane
,
H. W.
, and
White
,
R. E.
,
1999
, “
An Organizational Learning Framework: From Intuition to Institution
,”
Acad. Manage. Rev.
,
24
(
3
), pp.
522
537
.
44.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl.-Based Syst.
,
218
, p.
106873
.
45.
He
,
Y.
,
Camburn
,
B.
,
Liu
,
H.
,
Luo
,
J.
,
Yang
,
M.
, and
Wood
,
K.
,
2019
, “
Mining and Representing the Concept Space of Existing Ideas for Directed Ideation
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121101
.
46.
Shi
,
F.
,
Chen
,
L.
,
Han
,
J.
, and
Childs
,
P.
,
2017
, “
A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111402
.
47.
Kwon
,
H.
,
Park
,
Y.
, and
Geum
,
Y.
,
2018
, “
Toward Data-Driven Idea Generation: Application of Wikipedia to Morphological Analysis
,”
Technol. Forecast. Soc. Change
,
132
, pp.
56
80
.
48.
Wang
,
H.-C.
,
Cosley
,
D.
, and
Fussell
,
S. R.
,
2010
, “
Idea Expander: Supporting Group Brainstorming With Conversationally Triggered Visual Thinking Stimuli
,”
Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work
,
Savannah, GA
,
February
, Association for Computing Machinery, pp.
103
106
.
49.
Kim
,
J.
, and
Maher
,
M. L.
,
2023
, “
The Effect of AI-Based Inspiration on Human Design Ideation
,”
Int. J. Des. Creat. Innov.
,
11
(
2
), pp.
81
98
.
50.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
51.
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2023
, “
Learning to Design Without Prior Data: Discovering Generalizable Design Strategies Using Deep Learning and Tree Search
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031402
.
52.
Devlin
,
J.
,
Chang
,
M.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding”. CoRR, abs/1810.04805.
53.
Mullis
,
J.
,
Chen
,
C.
,
Morkos
,
B.
, and
Ferguson
,
S.
,
2024
, “
Deep Neural Networks in Natural Language Processing for Classifying Requirements by Origin and Functionality: An Application of BERT in System Requirements
,”
ASME J. Mech. Des.
,
146
(
4
), p.
041401
.
54.
Thoring
,
K.
,
Huettemann
,
S.
, and
Mueller
,
R. M.
,
2023
, “
The Augmented Designer: A Research Agenda for Generative AI-Enabled Design
,”
Proc. Des. Soc.
,
3
(
ICED23
), pp.
3345
3354
.
55.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Xia
,
F.
,
Chi
,
E.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2022
, “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,”
Advances in Neural Information Processing Systems
,
S.
Koyejo
,
S.
Mohamed
,
A.
Agarwal
,
D.
Belgrave
,
K.
Cho
, and
A.
Oh
, eds., Vol.
35
,
Curran Associates, Inc.
,
New York
, pp.
24824
24837
.
56.
Wang
,
S.
,
Petridis
,
S.
,
Kwon
,
T.
,
Ma
,
X.
, and
Chilton
,
L. B.
,
2023
, “
PopBlends: Strategies for Conceptual Blending With Large Language Models
,”
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
,
Hamburg, Germany
,
April
, Association for Computing Machinery, pp.
1
19
.
57.
Wang
,
B.
,
Zuo
,
H.
,
Cai
,
Z.
,
Yin
,
Y.
,
Childs
,
P.
,
Sun
,
L.
, and
Chen
,
L.
,
2023
, “
A Task-Decomposed AI-Aided Approach for Generative Conceptual Design
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
87349
,
American Society of Mechanical Engineers
, p.
V006T06A009
.
58.
Chen
,
L.
,
Wang
,
P.
,
Dong
,
H.
,
Shi
,
F.
,
Han
,
J.
,
Guo
,
Y.
,
Childs
,
P. R.
,
Xiao
,
J.
, and
Wu
,
C.
,
2019
, “
An Artificial Intelligence Based Data-Driven Approach for Design Ideation
,”
J. Visual Commun. Image Represent.
,
61
, pp.
10
22
.
59.
Quan
,
H.
,
Li
,
S.
, and
Hu
,
J.
,
2018
, “
Product Innovation Design Based on Deep Learning and Kansei Engineering
,”
Appl. Sci.
,
8
(
12
), p.
2397
.
60.
Midjourney
,
2024
. Midjourney, March. https://www.midjourney.com/website.
61.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
,
Sastry
,
G.
,
Askell
,
A.
,
Mishkin
,
P.
,
Clark
,
J.
,
Krueger
,
G.
, and
Sutskever
,
I.
,
2021
, “
Learning Transferable Visual Models From Natural Language Supervision
,”
Proceedings of the 38th International Conference on Machine Learning
,
Online
,
July
, PMLR, pp.
8748
8763
.
62.
Huicong
,
Hu
, and
Wen-Feng
,
Lu
,
2020
, “
Design Specification Representation for Intelligent Product Appearance Design
,”
E3S Web Conf.
,
179
, p.
02004
.
63.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), p.
26
.
64.
Hu
,
H.
,
Liu
,
Y.
,
Lu
,
W. F.
, and
Guo
,
X.
,
2022
, “
A Quantitative Aesthetic Measurement Method for Product Appearance Design
,”
Adv. Eng. Inform.
,
53
, p.
101644
.
65.
Wu
,
N.
,
Gong
,
M.
,
Shou
,
L.
,
Liang
,
S.
, and
Jiang
,
D.
,
2023
, “
Large Language Models Are Diverse Role-Players for Summarization Evaluation
,”
Natural Language Processing and Chinese Computing
,
Foshan, China
,
October
, Springer, pp.
695
707
.
66.
Kong
,
A.
,
Zhao
,
S.
,
Chen
,
H.
,
Li
,
Q.
,
Qin
,
Y.
,
Sun
,
R.
, and
Zhou
,
X.
,
2023
, “Better Zero-Shot Reasoning With Role-Play Prompting”. arXiv preprint arXiv:2308.07702.
67.
Park
,
J. S.
,
O’Brien
,
J.
,
Cai
,
C. J.
,
Morris
,
M. R.
,
Liang
,
P.
, and
Bernstein
,
M. S.
,
2023
, “
Generative Agents: Interactive Simulacra of Human Behavior
,”
Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology
,
San Francisco, CA
,
October
.
68.
Mirowski
,
P.
,
Mathewson
,
K. W.
,
Pittman
,
J.
, and
Evans
,
R.
,
2023
, “
Co-Writing Screenplays and Theatre Scripts With Language Models: Evaluation by Industry Professionals
,”
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
,
Hamburg, Germany
,
April
.
69.
Stability-AI
,
2024
. Stable-Diffusion – Run With an API on Replicate, March. https://replicate.com/stability-ai/stable-diffusion.
70.
Wang
,
Z. J.
,
Montoya
,
E.
,
Munechika
,
D.
,
Yang
,
H.
,
Hoover
,
B.
, and
Chau
,
D. H.
,
2023
, “Diffusiondb: A Large-Scale Prompt Gallery Dataset for Text-to-Image Generative Models,”
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
,
A.
Rogers
,
J.
Boyd-Graber
, and
N.
Okazaki
, eds., Vol.
1
,
Association for Computational Linguistics
,
Toronto, Canada
, pp.
893
911
.
71.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2011
, “
Assessing Design Creativity
,”
Des. Stud.
,
32
(
4
), pp.
348
383
.
72.
Youmans
,
R. J.
,
2011
, “
The Effects of Physical Prototyping and Group Work on the Reduction of Design Fixation
,”
Des. Stud.
,
32
(
2
), pp.
115
138
.
73.
Kim
,
M.
, and
Kim
,
S.
,
2023
, Red Dot Design Award: ELMER, March. https://www.red-dot.org/project/elmer-61420.
74.
OpenAI
,
2024
. Gpt-3.5 Turbo, March. https://platform.openai.com
75.
Stability-AI
,
2024
. Stable Diffusion, March. https://github.com/Stability-AI/stablediffusion
76.
Brisco
,
R.
,
Hay
,
L.
, and
Dhami
,
S.
,
2023
, “
Exploring the Role of Text-to-Image AI in Concept Generation
,”
Proc. Des. Soc.
,
3
(
ICED23
), pp.
1835
1844
.
77.
Matthews
,
C.
,
1998
, “7 – The Rainbow Sculpture – Innovation in Design,”
Case Studies in Engineering Design
,
M.
Flynn
and
L.
Gooster
, eds.,
Butterworth-Heinemann
,
London
, pp.
50
67
.
78.
Kaur
,
N.
,
Miller
,
L.
,
Njindam
,
D.
,
Rubis
,
N.
, and
Sennett
,
F.
,
2009
, “
Reconfigurable Obstetrics Delivery Bed
,” Deep Blue Documents.
79.
Yeadon
,
W.
, and
Hardy
,
T.
,
2024
, “
The Impact of AI in Physics Education: A Comprehensive Review From GCSE to University Levels
,”
Phys. Edu.
,
59
(
2
), p.
025010
.
80.
Hamraz
,
B.
, and
Clarkson
,
P. J.
,
2015
, “
Industrial Evaluation of FBS Linkage – A Method to Support Engineering Change Management
,”
J. Eng. Des.
,
26
(
1–3
), pp.
24
47
.
81.
Qin
,
J.
,
Zhang
,
W.
,
Chen
,
Z.
,
Guan
,
D.
,
Zhou
,
M.
, and
Li
,
S.
,
2019
, “Interaction Design of the Family Agent Based on the CMR-FBs Model,” Design
Design, User Experience, and Usability. Design Philosophy and Theory
,
A.
Marcus
, and
W.
Wang
, eds.,
Springer International Publishing
,
Cham
, pp.
324
334
.
82.
Mimura
,
Y.
,
Tsuchiya
,
T.
,
Moriyama
,
K.
,
Murata
,
K.
, and
Takasuka
,
S.
,
2020
, “UX Design for Mobile Application of E-Commerce Site by Using Kansei Interface,”
Advances in Industrial Design
,
G.
Di Bucchianico
,
C. S.
Shin
,
S.
Shim
,
S.
Fukuda
,
G.
Montagna
, and
C.
Carvalho
, eds.,
Springer International Publishing
,
Cham
, pp.
641
647
.
83.
Yeh
,
Y.-E.
,
2020
, “
Prediction of Optimized Color Design for Sports Shoes Using an Artificial Neural Network and Genetic Algorithm
,”
Appl. Sci.
,
10
(
5
), p.
1560
.
84.
Yang
,
C.
,
Liu
,
F.
, and
Ye
,
J.
,
2023
, “
A Product Form Design Method Integrating Kansei Engineering and Diffusion Model
,”
Adv. Eng. Inform.
,
57
, p.
102058
.
85.
Pugh
,
S.
,
1981
, “
Concept Selection: A Method That Works
,”
Proceedings of the International conference on Engineering Design
,
Rome, Italy
,
Aug. 9–13
, pp.
497
506
.
86.
Jain
,
A.
,
Mildenhall
,
B.
,
Barron
,
J. T.
,
Abbeel
,
P.
, and
Poole
,
B.
,
2022
, “
Zero-Shot Text-Guided Object Generation With Dream Fields
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
New Orleans, LA
,
June
, pp.
867
876
.
87.
Poole
,
B.
,
Jain
,
A.
,
Barron
,
J. T.
, and
Mildenhall
,
B.
,
2022
, “Dreamfusion: Text-to-3D using 2D Diffusion”. arXiv preprint arXiv:2209.14988.
88.
Jun
,
H.
, and
Nichol
,
A.
,
2023
, “Shap-e: Generating Conditional 3D Implicit Functions”. arXiv preprint arXiv:2305.02463.
89.
Lin
,
C.-H.
,
Gao
,
J.
,
Tang
,
L.
,
Takikawa
,
T.
,
Zeng
,
X.
,
Huang
,
X.
,
Kreis
,
K.
,
Fidler
,
S.
,
Liu
,
M.-Y.
, and
Lin
,
T.-Y.
,
2023
, “
Magic3d: High-Resolution Text-to-3D Content Creation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Vancouver, Canada
,
June
, pp.
300
309
.
90.
Praveena
,
B. A.
,
Lokesh
,
N.
,
Buradi
,
A.
,
Santhosh
,
N.
,
Praveena
,
B. L.
, and
Vignesh
,
R.
,
2022
, “
A Comprehensive Review of Emerging Additive Manufacturing (3D Printing Technology): Methods, Materials, Applications, Challenges, Trends and Future Potential
,”
Mater. Today: Proc.
,
52
(
Part 3
), pp.
1309
1313
.
You do not currently have access to this content.