Abstract

This article presents a novel three-dimensional topology optimization framework developed for 3D spatial packaging of interconnected systems using a geometric projection method (GPM). The proposed gradient-based topology optimization method simultaneously optimizes the locations and orientations of system components (or devices) and lengths, diameters, and trajectories of interconnects to reduce the overall system volume within the prescribed 3D design domain. The optimization is subject to geometric and physics-based constraints dictated by various system specifications, suited for a wide range of transportation (aerospace or automotive), heating, ventilation, air-conditioning, and refrigeration, and other complex system applications. The system components and interconnects are represented using 3D parametric shapes such as cubes, cuboids, and cylinders. These objects are then projected onto a three-dimensional finite element mesh using the geometric projection method. Sensitivities are calculated for the objective function (bounding box volume) with various geometric and physics-based (thermal and hydraulic) constraints. Several case studies were performed with different component counts, interconnection topologies, and system boundary conditions and are presented to exhibit the capabilities of the proposed 3D multi-physics spatial packaging optimization framework.

References

1.
Sakti
,
A.
,
Zeidner
,
L.
,
Hadzic
,
T.
,
Rock
,
B. S.
, and
Quartarone
,
G.
,
2016
, “
Constraint Programming Approach for Spatial Packaging Problem
,”
International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2016)
,
Bannf, Canada
,
May 29–June 1
, Springer International Publishing, pp.
319
328
.
2.
Peddada
,
S. R. T.
,
Zeidner
,
L. E.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2021
, “
An Introduction to 3D SPI2 (Spatial Packaging of Interconnected Systems With Physics Interactions) Design Problems: A Review of Related Work, Existing Gaps, Challenges, and Opportunities
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Virtual, Online
,
Aug. 17–19
, p. V03BT03A034.
3.
Peddada
,
S.
,
Zeidner
,
L.
,
Ilies
,
H. T.
,
James
,
K.
, and
Allison
,
J. T.
,
2022
, “
Toward Holistic Design of Spatial Packaging of Interconnected Systems With Physical Interactions (SPI2)
,”
ASME J. Mech. Des.
,
144
(
12
), p.
120801
.
4.
Bhattacharyya
,
A.
,
Peddada
,
S. R. T.
,
Bello
,
W. B.
,
Zeidner
,
L. E.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2022
, “
Simultaneous 3d Component Packing and Routing Optimization Using Geometric Projection
,”
AIAA 2022 SciTech Forum
,
San Diego, CA and online
,
Jan. 3–7
.
5.
Peddada
,
S. R. T.
,
Dunfield
,
N. M.
,
Zeidner
,
L. E.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2021
, “
Systematic Enumeration and Identification of Unique Spatial Topologies of 3D Systems Using Spatial Graph Representations
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Virtual, Online
,
Aug. 17–19
, p. V03AT03A042.
6.
Peddada
,
S. R. T.
,
2023
, “Automated Interference-Free Layout Generation Methods for 2D Interconnected Engineering Systems,” Tech. Rep., https://www.ideals.illinois.edu/items/126471
7.
Peddada
,
S. R. T.
,
2021
, “A Two-Stage Design Framework for Optimal Spatial Packaging of Fluid-Thermal Systems,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL, May, http://hdl.handle.net/2142/110458
8.
Qiang
,
L.
, and
Chengen
,
W.
,
2011
, “
A Discrete Particle Swarm Optimization Algorithm for Rectilinear Branch Pipe Routing
,”
Assembly Autom.
,
31
(
4
), pp.
363
368
.
9.
Shao
,
X.-Y.
,
Chu
,
X.-Z.
,
Qiu
,
H.-B.
,
Gao
,
L.
, and
Yan
,
J.
,
2009
, “
An Expert System Using Rough Sets Theory for Aided Conceptual Design of Ship’s Engine Room Automation
,”
Expert Syst. Appl.
,
36
(
2, Part 2
), pp.
3223
3233
.
10.
López-Camacho
,
E.
,
Ochoa
,
G.
,
Terashima-Marín
,
H.
, and
Burke
,
E. K.
,
2013
, “
An Effective Heuristic for the Two-Dimensional Irregular Bin Packing Problem
,”
Ann. Oper. Res.
,
206
(
1
), pp.
241
264
.
11.
Tejani
,
G. G.
,
Savsani
,
V. J.
,
Patel
,
V. K.
, and
Savsani
,
P. V.
,
2018
, “
Size, Shape, and Topology Optimization of Planar and Space Trusses Using Mutation-Based Improved Metaheuristics
,”
J. Comput. Des. Eng.
,
5
(
2
), pp.
198
214
.
12.
Gulić
,
M.
, and
Jakobović
,
D.
,
2017
, “
Evolution of Vehicle Routing Problem Heuristics With Genetic Programming
,”
2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
,
Opatija, Croatia
,
May 20–24
, pp.
988
992
.
13.
Beckert
,
B. A.
,
2013
, “
When Engineering Intuition Is Not Enough
,”
Altair Eng. Res.
,
1
(
1
), pp.
1
4
.
14.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081401
.
15.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
,
2006
, “
Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
.
16.
Szykman
,
S.
, and
Cagan
,
J.
,
1995
, “
A Simulated Annealing-Based Approach to Three-Dimensional Component Packing
,”
ASME J. Mech. Des.
,
117
(
2A
), pp.
308
314
.
17.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
,
2004
, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
188
191
.
18.
Yin
,
S.
, and
Cagan
,
J.
,
2000
, “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
102
108
.
19.
Szykman
,
S.
, and
Cagan
,
J.
,
1997
, “
Constrained Three-Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
28
35
.
20.
Yano
,
N.
,
Morinaga
,
T.
, and
Saito
,
T.
,
2008
, “
Packing Optimization for Cargo Containers
,”
2008 SICE Annual Conference
,
Tokyo, Japan
,
Aug. 20–22
, pp.
3479
3482
.
21.
Park
,
J.-H.
, and
Storch
,
R.
,
2002
, “
Pipe-Routing Algorithm Development: Case Study of a Ship Engine Room Design
,”
Expert Syst. Appl. (UK)
,
23
(
3
), pp.
299
309
.
22.
Betz
,
V.
, and
Rose
,
J.
,
1997
, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,”
Field-Programmable Logic and Applications
,
Luk
,
W.
,
Cheung
,
P. Y. K.
, and
Glesner
,
M.
, eds.,
Springer
,
Berlin
, pp.
213
222
.
23.
Szykman
,
S.
, and
Cagan
,
J.
,
1996
, “
Synthesis of Optimal Nonorthogonal Routes
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
419
424
.
24.
Guirardello
,
R.
, and
Swaney
,
R. E.
,
2005
, “
Optimization of Process Plant Layout With Pipe Routing
,”
Comput. Chem. Eng.
,
30
(
1
), pp.
99
114
.
25.
Lv
,
N.
,
Liu
,
J.
,
Xia
,
H.
,
Ma
,
J.
, and
Yang
,
X.
,
2020
, “
A Review of Techniques for Modeling Flexible Cables
,”
Comput. Aided Des.
,
122
, p.
102826
.
26.
Wehlin
,
C.
,
Persson
,
J. A.
, and
Ölvander
,
J.
,
2020
, “
Multi-objective Optimization of Hose Assembly Routing for Vehicles
,”
16th International DESIGN Conference (Proceedings of the Design Society)
,
Virtual, Online
,
Oct. 26–29
, Vol. 1, pp.
471
480
.
27.
Souissi
,
O.
,
Benatitallah
,
R.
,
Duvivier
,
D.
,
Artiba
,
A.
,
Belanger
,
N.
, and
Feyzeau
,
P.
,
2013
, “
Path Planning: A 2013 Survey
,”
2013 International Conference on Industrial Engineering and Systems Management (IESM)
,
Agdal, Morocco
,
Oct. 28–30
, pp.
1
8
.
28.
Hermansson
,
T.
,
Bohlin
,
R.
,
Carlson
,
J. S.
, and
Söderberg
,
R.
,
2016
, “
Automatic Routing of Flexible 1d Components With Functional and Manufacturing Constraints
,”
Comput. Aided Des.
,
79
(
10
), pp.
27
35
.
29.
Zhu
,
Z.
,
La Rocca
,
G.
, and
van Tooren
,
M. J. L.
,
2017
, “
A Methodology to Enable Automatic 3D Routing of Aircraft Electrical Wiring Interconnection System
,”
CEAS Aeronaut. J.
,
8
(
2
), pp.
287
302
.
30.
Belov
,
G.
,
Du
,
W.
,
Banda
,
M. G. D. L.
,
Harabor
,
D. D.
,
Koenig
,
S.
, and
Wei
,
X.
,
2020
, “
From Multi-Agent Pathfinding to 3D Pipe Routing
,”
Thirteenth Annual Symposium on Combinatorial Search (SOCS)
,
Online
,
May 26–28
.
31.
Rourke
,
P.
, and
Merritt
,
L.
,
2007
, “
Real-Time Semiautomatic 3D Pipe Routing
,”
J. Ship Prod.
,
23
(
03
), pp.
180
184
.
32.
Niu
,
Y.
,
Niu
,
W.
, and
Gao
,
W.
,
2017
, “Branch Pipe Routing Method Based on a 3D Network and Improved Genetic Algorithm,”
Civil, Architecture and Environmental Engineering
, 1st ed., Vol.
2
,
Taylor and Francis
,
Milton Park, Oxfordshire, UK
, pp.
1
6
.
33.
Zhou
,
Q.
, and
Lv
,
Y.
,
2020
, “
Research Based on Lee Algorithm and Genetic Algorithm of the Automatic External Pipe Routing of the Aircraft Engine
,”
Int. J. Mech. Eng. Appl.
,
8
(
1
), pp.
40
44
.
34.
Qu
,
Y.
,
Jiang
,
D.
, and
Yang
,
Q.
,
2018
, “
Branch Pipe Routing Based on 3D Connection Graph and Concurrent Ant Colony Optimization Algorithm
,”
J. Intell. Manuf.
,
29
, pp.
1647
1657
.
35.
Stanczak
,
M.
,
Pralet
,
C.
,
Vidal
,
V.
, and
Baudoui
,
V.
,
2020
, “
Optimal Pipe Routing Techniques in an Obstacle-Free 3D Space
,”
ICORES
,
La Valette, Malta
,
Feb. 22–24
.
36.
Suchorab
,
P.
, and
Kowalski
,
D.
,
2018
, “
Methods of Routing and Sizing of Water Supply Networks
,”
E3S Web Conf.
,
59
, p.
00024
.
37.
Agafonov
,
A. A.
, and
Myasnikov
,
V. V.
,
2018
, “
Vehicle Routing Algorithms Based on a Route Reservation Approach
,”
J. Phys.: Conf. Ser.
,
1096
(
1
), p.
012029
.
38.
Saleh
,
Y.
,
Tofigh
,
A.
, and
Zahra
,
A.
,
2014
, “
Transportation Routing in Urban Environments Using Updated Traffic Information Provided Through Vehicular Communications
,”
J. Transp. Syst. Eng. Inf. Technol.
,
14
(
5
), pp.
23
36
.
39.
Persson
,
L. G.
,
Santos
,
F. B.
,
Tavares
,
C. A. C.
,
de Andrade
,
A. E.
,
de Brito Alves
,
R. M.
, and
Biscaia
,
E. C.
,
2009
, “Methodology of Pipe and Equipment Layout for On-Shore Oil and Gas Industry,”
Comput. Aided Chem. Eng.
,
27
, pp.
1845
1850
.
40.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME J. Mech. Des.
,
141
(
8
), p.
083401
.
41.
Peddada
,
S. R. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
A Novel Two-Stage Design Framework for Two-Dimensional Spatial Packing of Interconnected Components
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031706
.
42.
Jessee
,
A.
,
Peddada
,
S. R. T.
,
Lohan
,
D. J.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2020
, “
Simultaneous Packing and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111702
.
43.
Bello
,
W. B.
,
Peddada
,
S. R. T.
,
Bhattacharyya
,
A.
,
Jennings
,
M.
,
Katragadda
,
S.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2022
, “
Underhood Spatial Packing and Routing of an Automotive Fuel Cell System (AFCS) Using 2D Geometric Projection
,”
AIAA SciTech 2022 Forum
,
San Diego, CA and Online
,
Jan. 3–7
.
44.
Peddada
,
S. R. T.
,
Rodriguez
,
S. B.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
Automated Layout Generation Methods for 2D Spatial Packing
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC)
,
Virtual, Online
,
Aug. 17–20
.
45.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
46.
Peddada
,
S. R. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
A Novel Two-Stage Design Framework for 2D Spatial Packing of Interconnected Components
,”
ASME 2020 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE)
,
Online, Virtual
,
Aug. 17–19
, p. V11BT11A032.
47.
Smith
,
H.
, and
Norato
,
J. A.
,
2020
, “
A Matlab Code for Topology Optimization Using the Geometry Projection Method
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
1579
1594
.
48.
Peddada
,
S. R. T.
,
Dunfield
,
N. M.
,
Zeidner
,
L. E.
,
Givans
,
Z. R.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2023
, “
Enumeration and Identification of Unique 3d Spatial Topologies of Interconnected Engineering Systems Using Spatial Graphs
,”
ASME J. Mech. Des.
,
145
(
10
), p.
101708
.
49.
Smith
,
H.
, and
Norato
,
J. A.
,
2020
, “
A Matlab Code for Topology Optimization Using the Geometry Projection Method
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1579
1594
.
50.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
51.
Rozvany
,
G.
,
2000
, “
The SIMP Method in Topology Optimization—Theoretical Background, Advantages and New Applications
,”
8th AIAA Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8
.
52.
Yulin
,
M.
, and
Xiaoming
,
W.
,
2004
, “
A Level Set Method for Structural Topology Optimization and Its Applications
,”
Adv. Eng. Softw.
,
35
(
7
), pp.
415
441
.
53.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
54.
Nakayama
,
Y.
,
2018
, “Chapter 7—Flow in Pipes,”
Introduction to Fluid Mechanics
, 2nd ed.,
Butterworth-Heinemann
,
Amsterdam, Netherlands
, pp.
135
161
.
You do not currently have access to this content.