In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.

1.
Hollerbach
,
J. M.
, and
Wampler
,
C. W.
, 1996, “
A Taxonomy of Kinematic Calibration Methods
,”
Int. J. Robot. Res.
0278-3649,
15
(
6
), pp.
573
591
.
2.
Zhuang
,
H.
,
Masory
,
O.
, and
Yan
,
J.
, 1995, “
Kinematic Calibration of Stewart Platform Using Pose Measurements Obtained by a Single Theodolite
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System
, Vol.
2
, pp.
329
335
.
3.
Koseki
,
Y.
,
Arai
,
T.
,
Sugimoto
,
K.
,
Takatuji
,
T.
, and
Goto
,
M.
, 1998, “
Design and Accuracy Evaluation of High-Speed and High-Precision Parallel Mechanism
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1340
1345
.
4.
Bennett
,
D. J.
, and
Hollerbach
,
J. M.
, 1991, “
Autonomous Calibration of Single Loop Closed Kinematic Chain Formed by Manipulators With Passive Endpoint Constraints
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
5
), pp.
597
605
.
5.
Khalil
,
W.
, and
Besnard
,
S.
, 1999, “
Self-Calibration of Stewart–Gough Parallel Robots Without Extra Sensors
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
6
), pp.
1116
1121
.
6.
Weck
,
M.
, and
Staimer
,
D.
, 2000, “
Accuracy Issues of Parallel Kinematic Machine Tools: Compensation and Calibration
,”
International Conference on Parallel Kinematic Machines
, pp.
35
41
.
7.
Jokiel
,
B.
, Jr.
,
Bieg
,
L.
, and
Ziegert
,
J. C.
, 2000, “
Stewart Platform Calibration Using Sequential Determination of Kinematic Parameters
,”
Proceedings of the International Conference on Parallel Kinematic Machines
, pp.
50
56
.
8.
Merlet
,
J. P.
, 2006,
Parallel Robots
, 2nd ed.,
Springer
,
New York
.
9.
Besnard
,
S.
, and
Khalil
,
W.
, 1999, “
Calibration of Parallel Robots Using Two Inclinometers
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Detroit, MI, pp.
1758
1763
.
10.
Maurine
,
P.
,
Abe
,
K.
, and
Uchiyama
,
M.
, 1999, “
Towards More Accurate Parallel Robots
,”
IMEKO-XV, WCIMC
, Osaka, Japan, pp.
73
80
.
11.
Zhuang
,
H.
, 1997, “
Self Calibration of Parallel Mechanisms With a Case Study on Stewart Platforms
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
3
), pp.
387
397
.
12.
Iurascu
,
C. C.
, and
Park
,
F. C.
, 2003, “
Kinematic Calibration of Robots Containing Closed Loops
,”
ASME J. Mech. Des.
0161-8458,
125
(
1
), pp.
23
32
.
13.
Verner
,
M.
,
Xi
,
F.
, and
Mechefske
,
C.
, 2005, “
Optimal Calibration of Parallel Kinematic Machines
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
62
69
.
14.
Jeong
,
J.
,
Kang
,
D.
,
Cho
,
Y. M.
, and
Kim
,
J.
, 2004, “
Kinematic Calibration for Redundantly Actuated Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
307
318
.
15.
Khalil
,
W.
, and
Gautier
,
M.
, 1991, “
Calculation of the Identifiable Parameters for Robots Calibration
,”
Ninth IFAC/IFOR Symposium on Identification and System Parameter Estimation
, Budapest, Hungary, pp.
888
892
.
16.
Besnard
,
S.
, and
Khalil
,
W.
, 2001, “
Identifiable Parameters for Parallel Robots Kinematic Calibration
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Seoul, Korea, pp.
2859
2866
.
17.
Yiu
,
Y. K.
,
Meng
,
J.
, and
Li
,
Z. X.
, 2003, “
Auto-Calibration for a Parallel Manipulator With Sensor Redundancy
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3660
3665
.
18.
Rauf
,
A.
,
Kim
,
S.
, and
Ryu
,
J.
, 2004, “
Complete Parameter Identification of Parallel Manipulators With Partial Pose Information Using a New Measurement Device
,”
Robotica
0263-5747,
22
(
6
), pp.
689
695
.
19.
Storn
,
R.
, and
Price
,
K.
, 1995, “
Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
,” ICSI, Technical Report No. TR-95-012.
20.
Storn
,
R.
, and
Price
,
K.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
0925-5001,
11
, pp.
341
359
.
21.
Zhang
,
Y.
,
Cong
,
S.
,
Li
,
Z.
, and
Jiang
,
S.
, 2007, “
Auto-Calibration of a Redundant Parallel Manipulator Based on the Projected Tracking Error
,”
Arch. Appl. Mech.
0939-1533,
77
, pp.
697
706
.
22.
Feng
,
C.
,
Cong
,
S.
,
Zhang
,
Y.
,
Li
,
Z.
, and
Jiang
,
S.
, 2008, “
Kinematic Parameters Calibration of Redundant Planar 2-DOF Parallel Manipulator With a New Error Function
,”
Proceedings of the World Congress on Intelligent Control and Automation
, pp.
426
431
.
23.
Storn
,
R.
, 1996, “
On the Usage of Differential Evolution for Function Optimization
,”
Proceedings of Fuzzy Information Processing Society, 1996 Biennial Conference of the North American
, pp.
519
523
.
You do not currently have access to this content.