This paper presents a pseudo-static modeling methodology for dynamic analysis of distributed compliant mechanisms to provide accurate and efficient solutions. First, a dynamic stiffness matrix of the flexible beam is deduced, which has the same definition and a similar form as the traditional static compliance/stiffness matrix but is frequency dependent. Second, the pseudo-static modeling procedure for the dynamic analysis is implemented in a statics-similar way based on D'alembert's principle. Then, all the kinematic, static and dynamic performances of compliant mechanisms can be analyzed based on the pseudo-static model. The superiority of the proposed method is that when it is used for the dynamic modeling of compliant mechanisms, the traditional dynamic modeling procedures, such as calculation of the elastic and kinetic energies as well as using Lagrange's equation, are avoided and the dynamic modeling is converted to a statics-similar problem. Comparison of the proposed method with an elastic-beam-based model in previous literature and finite element analysis for an exemplary XY precision positioning stage reveals its high accuracy and easy operation.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
2.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
3.
Su
,
H. J.
,
2009
, “
A Pseudo-Rigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
4.
Midha
,
A.
,
Bapat
,
S. G.
,
Mavanthoor
,
A.
, and
Chinta
,
V.
,
2015
, “
Analysis of a Fixed-Guided Compliant Beam With an Inflection Point Using the Pseudo-Rigid-Body Model Concept
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031007
.
5.
Calogero
,
J.
,
Frecker
,
M.
,
Hasnain
,
Z.
, and
Hubbard
,
J. E.
,
2018
, “
Tuning of a Rigid-Body Dynamics Model of a Flapping Wing Structure With Compliant Joints
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011007
.
6.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
7.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam Constraint Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
.
8.
Turkkan
,
O. A.
, and
Su
,
H. J.
,
2017
, “
A General and Efficient Multiple Segment Method for Kinetostatic Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
112
, pp.
205
217
.
9.
Kurita
,
Y.
,
Sugihara
,
F.
,
Ueda
,
J.
, and
Ogasawara
,
T.
,
2012
, “
Piezoelectric Tweezer-Type End Effector With Force-and Displacement-Sensing Capability
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1039
1048
.
10.
Ling
,
M.
,
Cao
,
J.
,
Zeng
,
M.
,
Lin
,
J.
, and
Inman
,
D. J.
,
2016
, “
Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms
,”
Smart Mater. Struct.
,
25
(
7
), pp.
75022
75032
.
11.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2003
, “
Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms
,”
Comput. Struct.
,
81
(
32
), pp.
2797
2810
.
12.
Yong
,
Y. K.
, and
Leang
,
K. K.
,
2016
, “
Mechanical Design of High-Speed Nanopositioning Systems
,”
Nanopositioning Technologies
,
Springer International Publishing
, New York, pp.
61
121
.
13.
Li
,
Y.
, and
Xu
,
Q.
,
2010
, “
Development and Assessment of a Novel Decoupled XY Parallel Micropositioning Platform
,”
IEEE/ASME Trans. Mechatronics
,
15
(
1
), pp.
125
135
.
14.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2002
, “
Kinematic Analysis of a Translational 3-DOF Micro-Parallel Mechanism Using the Matrix Method
,”
Adv. Rob.
,
16
(
3
), pp.
251
264
.
15.
Choi
,
K. B.
,
Lee
,
J. J.
,
Kim
,
G. H.
,
Lim
,
H. J.
, and
Kwon
,
S. G.
,
2018
, “
Amplification Ratio Analysis of a Bridge-Type Mechanical Amplification Mechanism Based on a Fully Compliant Model
,”
Mech. Mach. Theory
,
121
, pp.
355
372
.
16.
Lobontiu
,
N.
,
2014
, “
Compliance-Based Matrix Method for Modeling the Quasi-Static Response of Planar Serial Flexure-Hinge Mechanisms
,”
Precis. Eng.
,
38
(
3
), pp.
639
650
.
17.
Jiang
,
Y.
,
Li
,
T. M.
, and
Wang
,
L. P.
,
2015
, “
Stiffness Modeling of Compliant Parallel Mechanisms and Applications in the Performance Analysis of a Decoupled Parallel Compliant Stage
,”
Rev. Sci. Instrum.
,
86
(
9
), p.
095109
.
18.
Yu
,
Y. Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M. G.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
.
19.
Guo
,
Z.
,
Tian
,
Y.
,
Liu
,
C.
,
Wang
,
F.
,
Liu
,
X.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2015
, “
Design and Control Methodology of a 3-DOF Flexure-Based Mechanism for Micro/Nano-Positioning
,”
Rob. Comput. Integr. Manuf.
,
32
, pp.
93
105
.
20.
Chen
,
W.
,
Qu
,
J.
,
Chen
,
W.
, and
Zhang
,
J.
,
2017
, “
A Compliant Dual-Axis Gripper With Integrated Position and Force Sensing
,”
Mechatronics
,
47
, pp.
105
115
.
21.
Xu
,
Q.
,
2013
, “
Design, Testing and Precision Control of a Novel Long-Stroke Flexure Micropositioning System
,”
Mech. Mach. Theory
,
70
, pp.
209
224
.
22.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2015
, “
Design of a Piezoelectric-Actuated Microgripper With a Three-Stage Flexure-Based Amplification
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2205
2213
.
23.
Li
,
Y.
, and
Wu
,
Z.
,
2016
, “
Design, Analysis and Simulation of a Novel 3-DOF Translational Micromanipulator Based on the PRB Model
,”
Mech. Mach. Theory
,
100
, pp.
235
258
.
24.
Tang
,
H.
, and
Li
,
Y.
,
2014
, “
Development and Active Disturbance Rejection Control of a Compliant Micro-/Nanopositioning Piezostage With Dual Mode
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1475
1492
.
25.
Zhu
,
X.
,
Xu
,
X.
,
Wen
,
Z.
,
Ren
,
J.
, and
Liu
,
P.
,
2015
, “
A Novel Flexure-Based Vertical Nanopositioning Stage With Large Travel Range
,”
Rev. Sci. Instrum.
,
86
(
10
), p.
105112
.
26.
Zhu
,
W. L.
,
Zhu
,
Z.
,
Guo
,
P.
, and
Ju
,
B. F.
,
2018
, “
A Novel Hybrid Actuation Mechanism Based XY Nanopositioning Stage With Totally Decoupled Kinematics
,”
Mech. Syst. Signal Process.
,
99
, pp.
747
759
.
27.
Polit
,
S.
, and
Dong
,
J.
,
2011
, “
Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nanomanufacturing
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
724
733
.
28.
Liu
,
P.
,
Yan
,
P.
, and
Zhang
,
Z.
,
2015
, “
Design and Analysis of an X–Y Parallel Nanopositioner Supporting Large-Stroke Servomechanism
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
2
), pp.
364
376
.
29.
Ryu
,
J. W.
,
Lee
,
S. Q.
,
Gweon
,
D. G.
, and
Moon
,
K. S.
,
1999
, “
Inverse Kinematic Modeling of a Coupled Flexure Hinge Mechanism
,”
Mechatronics
,
9
(
6
), pp.
657
674
.
30.
Choi
,
S. B.
,
Han
,
S. S.
,
Han
,
Y. M.
, and
Thompson
,
B. S.
,
2007
, “
A Magnification Device for Precision Mechanisms Featuring Piezoactuators and Flexure Hinges: Design and Experimental Validation
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1184
1198
.
31.
Kim
,
H.
, and
Gweon
,
D. G.
,
2012
, “
Development of a Compact and Long Range XYθz Nano-Positioning Stage
,”
Rev. Sci. Instrum.
,
83
(
8
), p.
085102
.
32.
Lai
,
L. J.
, and
Zhu
,
Z. N.
,
2017
, “
Design, Modeling and Testing of a Novel Flexure-Based Displacement Amplification Mechanism
,”
Sens. Actuators A
,
266
, pp.
122
129
.
33.
Lee
,
H. J.
,
Kim
,
H. C.
,
Kim
,
H. Y.
, and
Gweon
,
D. G.
,
2013
, “
Optimal Design and Experiment of a Three-Axis out-of-Plane Nano Positioning Stage Using a New Compact Bridge-Type Displacement Amplifier
,”
Rev. Sci. Instrum.
,
84
(
11
), p.
115103
.
34.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2017
, “
A Semi-Analytical Modeling Method for the Static and Dynamic Analysis of Complex Compliant Mechanism
,”
Precis. Eng.
,
52
, pp. 64–72.
35.
Rösner
,
M.
,
Lammering
,
R.
, and
Friedrich
,
R.
,
2015
, “
Dynamic Modeling and Model Order Reduction of Compliant Mechanisms
,”
Precis. Eng.
,
42
, pp.
85
92
.
36.
Shen
,
Y.
,
Chen
,
X.
,
Jiang
,
W.
, and
Luo
,
X.
,
2014
, “
Spatial Force-Based Non-Prismatic Beam Element for Static and Dynamic Analyses of Circular Flexure Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
38
(
2
), pp.
311
320
.
37.
Pereira
,
E.
,
Aphale
,
S. S.
,
Feliu
,
V.
, and
Moheimani
,
S. R.
,
2011
, “
Integral Resonant Control for Vibration Damping and Precise Tip-Positioning of a Single-Link Flexible Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
16
(
2
), pp.
232
240
.
38.
Lobontiu
,
N.
,
Paine
,
J. S.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2001
, “
Corner-Filleted Flexure Finges
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
346
352
.
39.
Yong
,
Y. K.
,
Lu
,
T. F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
40.
Wang
,
H.
, and
Zhang
,
X.
,
2008
, “
Input Coupling Analysis and Optimal Design of a 3-DOF Compliant Micro-Positioning Stage
,”
Mech. Mach. Theory
,
43
(
4
), pp.
400
410
.
41.
Cao
,
L.
,
Dolovich
,
A. T.
, and
Zhang
,
W. C.
,
2015
, “
Hybrid Compliant Mechanism Design Using a Mixed Mesh of Flexure Hinge Elements and Beam Elements Through Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092303
.
42.
Banerjee
,
J. R.
, and
Williams
,
F. W.
,
1985
, “
Exact Bernoulli–Euler Dynamic Stiffness Matrix for a Range of Tapered Beams
,”
Int. J. Numer. Methods Eng.
,
21
(
12
), pp.
2289
2302
.
43.
Ling
,
M.
,
Cao
,
J.
,
Howell
,
L. L.
, and Zeng, M.,
2018
, “
Kinetostatic Modeling of Complex Compliant Mechanisms With Serial-Parallel Substructures: A Semi-Analytical Matrix Displacement Method
,”
Mech. Mach. Theory
,
125
, pp. 169–184.
44.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2017
, “
Modular Kinematics and Statics Modeling for Precision Positioning Stage
,”
Mech. Mach. Theory
,
107
, pp.
274
282
.
You do not currently have access to this content.