Abstract

When optimizing corrugated flexure (CF) joints, most approaches for calculating the maximum stress on the CF beam depend on finite element analysis (FEA). The current paper introduces the design optimization for joints using CF units under stress constraints. The stress state is solved; based on that, the maximum displacement under stress constraints is deduced. The natural frequency formula of the translational joint is further derived from the results of the stiffness matrix. The stage configurations corresponding to the maximum displacement are optimized by restricting the off-axis/axial stiffness ratio and natural frequency of the joint. The optimal results of different types are validated by FEA and experiments.

References

1.
Howell
,
L. L.
,
2013
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Yong
,
Y.
,
Moheimani
,
S. R.
,
Kenton
,
B. J.
, and
Leang
,
K.
,
2012
, “
Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
121101
.
3.
Clark
,
L.
,
Shirinzadeh
,
B.
,
Bhagat
,
U.
,
Smith
,
J.
, and
Zhong
,
Y.
,
2015
, “
Development and Control of a Two Dof Linear–Angular Precision Positioning Stage
,”
Mechatronics
,
32
(
1
), pp.
34
43
.
4.
Wu
,
Z.
, and
Xu
,
Q.
,
2018
, “
Survey on Recent Designs of Compliant Micro-Nano-Positioning Stages
,”
Actuators
,
7
(
1
), p.
5
.
5.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
6.
Liu
,
M.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2017
, “
Design of Flexure Hinges Based on Stress-Constrained Topology Optimization
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
24
), pp.
4635
4645
.
7.
Chen
,
G.
,
Liu
,
X.
,
Gao
,
H.
, and
Jia
,
J.
,
2009
, “
A Generalized Model for Conic Flexure Hinges
,”
Rev. Entific Inst.
,
80
(
5
), p.
151
.
8.
Zhu
,
B.
,
Liu
,
M.
,
Chen
,
Q.
,
Li
,
H.
,
Zhang
,
X.
, and
Fu
,
Y.
,
2017
, “
Topology Optimization of the Flexure Hinges for Precision Engineering
,”
2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
,
Montréal, Canada
.
9.
Tran
,
A. V.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2017
, “
The Development of a New Piezoresistive Pressure Sensor for Low Pressures
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6487
6496
.
10.
Lobontiu
,
N.
,
Cullin
,
M.
,
Petersen
,
T.
,
Alcazar
,
J. A.
, and
Noveanu
,
S.
,
2014
, “
Planar Compliances of Symmetric Notch Flexure Hinges: The Right Circularly Corner-Filleted Parabolic Design
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
1
), pp.
169
176
.
11.
Gan
,
J.
,
Zhang
,
X.
,
Li
,
H.
, and
Wu
,
H.
,
2017
, “
Full Closed-Loop Controls of Micro/Nano Positioning System with Nonlinear Hysteresis Using Micro-Vision System
,”
Sens. Actu. A: Physical
,
257
(
1
), pp.
125
133
.
12.
Venkiteswaran
,
V. K.
, and
Su
,
H. -J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092302
.
13.
Venkiteswaran
,
V. K.
, and
Su
,
H. -J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
(
2
), pp.
80
93
.
14.
Edwards
,
B. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2001
, “
A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
464
468
.
15.
Chen
,
G.
, and
Ma
,
F.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
16.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2018
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
17.
Huang
,
S.-C.
, and
Dao
,
T.-P.
,
2016
, “
Design and Computational Optimization of a Flexure-Based xy Positioning Platform Using FEA-Based Response Surface Methodology
,”
Int. J. Precis. Eng. Manuf.
,
17
(
8
), pp.
1035
1048
.
18.
Huang
,
S.-C.
, and
Dao
,
T.-P.
,
2016
, “
Multi-Objective Optimal Design of a 2-dof Flexure-Based Mechanism Using Hybrid Approach of Grey-taguchi Coupled Response Surface Methodology and Entropy Measurement
,”
Arabian J. Sci. Eng.
,
41
(
12
), pp.
5215
5231
.
19.
Kim
,
J.-J.
,
Choi
,
Y.-M.
,
Ahn
,
D.
,
Hwang
,
B.
,
Gweon
,
D.-G.
, and
Jeong
,
J.
,
2012
, “
A Millimeter-Range Flexure-Based Nano-Positioning Stage Using a Self-Guided Displacement Amplification Mechanism
,”
Mech. Mach. Theory
,
50
(
1
), pp.
109
120
.
20.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based xy Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.
21.
Wiersma
,
D.
,
Boer
,
S.
,
Aarts
,
R. G.
, and
Brouwer
,
D. M.
,
2014
, “
Design and Performance Optimization of Large Stroke Spatial Flexures
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011016
.
22.
Ryu
,
J. W.
,
Gweon
,
D.-G.
, and
Moon
,
K. S.
,
1997
, “
Optimal Design of a Flexure Hinge Based xyφ Wafer Stage
,”
Precis. Eng.
,
21
(
1
), pp.
18
28
.
23.
Wang
,
N.
,
Liang
,
X.
, and
Zhang
,
X.
,
2014
, “
Pseudo-Rigid-Body Model for Corrugated Cantilever Beam Used in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
27
(
1
), pp.
122
129
.
24.
Wang
,
N.
,
Liang
,
X.
, and
Zhang
,
X.
,
2015
, “
Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
776
784
.
25.
Wang
,
N.
,
Zhang
,
Z.
,
Zhang
,
X.
, and
Cui
,
C.
,
2018
, “
Optimization of a 2-dof Micro-Positioning Stage Using Corrugated Flexure Units
,”
Mech. Mach. Theory
,
121
(
1
), pp.
683
696
.
26.
Wang
,
N.
,
Zhang
,
Z.
,
Yue
,
F.
, and
Zhang
,
X.
,
2019
, “
Design and Analysis of Translational Joints Using Corrugated Flexural Beams With Conic Curve Segments
,”
Mech. Mach. Theory
,
132
(
6
), pp.
223
235
.
27.
Wang
,
N.
,
Zhang
,
Z.
,
Yue
,
F.
, and
Zhang
,
X.
,
2019
, “
Exploration of Translational Joint Design Using Corrugated Flexure Units With Bézier Curve Segments
,”
ASME J. Mech. Des.
,
141
(
5
), p.
052301
.
28.
Yu
,
M.
, and
He
,
L.
,
1992
, “A New Model and Theory on Yield and Failure of Materials Under the Complex Stress State,”
Mechanical Behaviour of Materials VI
,
Elsevier
,
Amsterdam
, pp.
841
846
.
You do not currently have access to this content.