Abstract
When optimizing corrugated flexure (CF) joints, most approaches for calculating the maximum stress on the CF beam depend on finite element analysis (FEA). The current paper introduces the design optimization for joints using CF units under stress constraints. The stress state is solved; based on that, the maximum displacement under stress constraints is deduced. The natural frequency formula of the translational joint is further derived from the results of the stiffness matrix. The stage configurations corresponding to the maximum displacement are optimized by restricting the off-axis/axial stiffness ratio and natural frequency of the joint. The optimal results of different types are validated by FEA and experiments.
Issue Section:
Research Papers
References
1.
Howell
, L. L.
, 2013
, Compliant Mechanisms
, John Wiley & Sons
, Hoboken, NJ
.2.
Yong
, Y.
, Moheimani
, S. R.
, Kenton
, B. J.
, and Leang
, K.
, 2012
, “Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,” Rev. Sci. Instrum.
, 83
(12
), p. 121101
. 3.
Clark
, L.
, Shirinzadeh
, B.
, Bhagat
, U.
, Smith
, J.
, and Zhong
, Y.
, 2015
, “Development and Control of a Two Dof Linear–Angular Precision Positioning Stage
,” Mechatronics
, 32
(1
), pp. 34
–43
. 4.
Wu
, Z.
, and Xu
, Q.
, 2018
, “Survey on Recent Designs of Compliant Micro-Nano-Positioning Stages
,” Actuators
, 7
(1
), p. 5
.5.
Ma
, F.
, and Chen
, G.
, 2016
, “Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,” ASME J. Mech. Rob.
, 8
(2
), p. 021018
. 6.
Liu
, M.
, Zhang
, X.
, and Fatikow
, S.
, 2017
, “Design of Flexure Hinges Based on Stress-Constrained Topology Optimization
,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
, 231
(24
), pp. 4635
–4645
. 7.
Chen
, G.
, Liu
, X.
, Gao
, H.
, and Jia
, J.
, 2009
, “A Generalized Model for Conic Flexure Hinges
,” Rev. Entific Inst.
, 80
(5
), p. 151
.8.
Zhu
, B.
, Liu
, M.
, Chen
, Q.
, Li
, H.
, Zhang
, X.
, and Fu
, Y.
, 2017
, “Topology Optimization of the Flexure Hinges for Precision Engineering
,” 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
, Montréal, Canada
.9.
Tran
, A. V.
, Zhang
, X.
, and Zhu
, B.
, 2017
, “The Development of a New Piezoresistive Pressure Sensor for Low Pressures
,” IEEE Trans. Ind. Electron.
, 65
(8
), pp. 6487
–6496
. 10.
Lobontiu
, N.
, Cullin
, M.
, Petersen
, T.
, Alcazar
, J. A.
, and Noveanu
, S.
, 2014
, “Planar Compliances of Symmetric Notch Flexure Hinges: The Right Circularly Corner-Filleted Parabolic Design
,” IEEE Trans. Autom. Sci. Eng.
, 11
(1
), pp. 169
–176
. 11.
Gan
, J.
, Zhang
, X.
, Li
, H.
, and Wu
, H.
, 2017
, “Full Closed-Loop Controls of Micro/Nano Positioning System with Nonlinear Hysteresis Using Micro-Vision System
,” Sens. Actu. A: Physical
, 257
(1
), pp. 125
–133
. 12.
Venkiteswaran
, V. K.
, and Su
, H. -J.
, 2016
, “Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,” ASME J. Mech. Des.
, 138
(9
), p. 092302
. 13.
Venkiteswaran
, V. K.
, and Su
, H. -J.
, 2016
, “Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,” Mech. Mach. Theory
, 106
(2
), pp. 80
–93
. 14.
Edwards
, B. T.
, Jensen
, B. D.
, and Howell
, L. L.
, 2001
, “A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,” ASME J. Mech. Des.
, 123
(3
), pp. 464
–468
. 15.
Chen
, G.
, and Ma
, F.
, 2016
, “Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,” ASME J. Mech. Rob.
, 8
(2
), p. 021018
. 16.
Chen
, G.
, Ma
, F.
, Hao
, G.
, and Zhu
, W.
, 2018
, “Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,” ASME J. Mech. Rob.
, 11
(1
), p. 011002
. 17.
Huang
, S.-C.
, and Dao
, T.-P.
, 2016
, “Design and Computational Optimization of a Flexure-Based xy Positioning Platform Using FEA-Based Response Surface Methodology
,” Int. J. Precis. Eng. Manuf.
, 17
(8
), pp. 1035
–1048
. 18.
Huang
, S.-C.
, and Dao
, T.-P.
, 2016
, “Multi-Objective Optimal Design of a 2-dof Flexure-Based Mechanism Using Hybrid Approach of Grey-taguchi Coupled Response Surface Methodology and Entropy Measurement
,” Arabian J. Sci. Eng.
, 41
(12
), pp. 5215
–5231
. 19.
Kim
, J.-J.
, Choi
, Y.-M.
, Ahn
, D.
, Hwang
, B.
, Gweon
, D.-G.
, and Jeong
, J.
, 2012
, “A Millimeter-Range Flexure-Based Nano-Positioning Stage Using a Self-Guided Displacement Amplification Mechanism
,” Mech. Mach. Theory
, 50
(1
), pp. 109
–120
. 20.
Li
, Y.
, and Xu
, Q.
, 2009
, “Design and Analysis of a Totally Decoupled Flexure-Based xy Parallel Micromanipulator
,” IEEE Trans. Rob.
, 25
(3
), pp. 645
–657
. 21.
Wiersma
, D.
, Boer
, S.
, Aarts
, R. G.
, and Brouwer
, D. M.
, 2014
, “Design and Performance Optimization of Large Stroke Spatial Flexures
,” ASME J. Comput. Nonlinear Dyn.
, 9
(1
), p. 011016
. 22.
Ryu
, J. W.
, Gweon
, D.-G.
, and Moon
, K. S.
, 1997
, “Optimal Design of a Flexure Hinge Based xyφ Wafer Stage
,” Precis. Eng.
, 21
(1
), pp. 18
–28
. 23.
Wang
, N.
, Liang
, X.
, and Zhang
, X.
, 2014
, “Pseudo-Rigid-Body Model for Corrugated Cantilever Beam Used in Compliant Mechanisms
,” Chin. J. Mech. Eng.
, 27
(1
), pp. 122
–129
. 24.
Wang
, N.
, Liang
, X.
, and Zhang
, X.
, 2015
, “Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms
,” Chin. J. Mech. Eng.
, 28
(4
), pp. 776
–784
. 25.
Wang
, N.
, Zhang
, Z.
, Zhang
, X.
, and Cui
, C.
, 2018
, “Optimization of a 2-dof Micro-Positioning Stage Using Corrugated Flexure Units
,” Mech. Mach. Theory
, 121
(1
), pp. 683
–696
. 26.
Wang
, N.
, Zhang
, Z.
, Yue
, F.
, and Zhang
, X.
, 2019
, “Design and Analysis of Translational Joints Using Corrugated Flexural Beams With Conic Curve Segments
,” Mech. Mach. Theory
, 132
(6
), pp. 223
–235
. 27.
Wang
, N.
, Zhang
, Z.
, Yue
, F.
, and Zhang
, X.
, 2019
, “Exploration of Translational Joint Design Using Corrugated Flexure Units With Bézier Curve Segments
,” ASME J. Mech. Des.
, 141
(5
), p. 052301
. 28.
Yu
, M.
, and He
, L.
, 1992
, “A New Model and Theory on Yield and Failure of Materials Under the Complex Stress State,” Mechanical Behaviour of Materials VI
, Elsevier
, Amsterdam
, pp. 841
–846
.Copyright © 2021 by ASME
You do not currently have access to this content.