Abstract

The SDelta is a three-limb, six-degrees-of-freedom parallel kinematics machine, a pertinent candidate for high-speed operations by virtue of its simple architecture. The original design of the SDelta includes a planar base and moving platforms. Here, we propose a novel architecture for an improved SDelta, the orthogonal SDelta (OSD), with a cube-shaped orthogonal base platform. Inverse and forward position models are reported, along with singularity and dexterity analyses. Moreover, design parameters and mechanical constraints leading to a singularity-free workspace are provided. An evaluation of the system translational workspace and orientational capability, upon consideration of volume and dexterity, is included. The SDelta as well as a generic 6SPS mechanism (C, P, and S denote, respectively, the cylindrical, prismatic, and spherical kinematic pairs, the actuated pair is represented underlined, as P) are designed with the same parameters, then the performance of the SDelta, the OSD, and the 6SPS mechanisms are being compared. The results show that the orientational capability of the OSD is better than those of the 6SPS and the SDelta. Furthermore, the OSD has an average condition number of 2.9 over its translational workspace and 1.69 over a predefined effective regular workspace, which make the OSD a good candidate for operations that need both a high orientational capability and high dexterity.

References

1.
Merlet
,
J. P.
,
Gosselin
,
C.
, and
Huang
,
T.
,
2016
,
Parallel Mechanisms
,
Springer International Publishing
,
Cham
, pp.
443
462
.
2.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems. Theory, Methods, Algorithms
, Vol. 4,
Springer
,
New York
.
3.
Tsai
,
L.-W.
,
1999
,
Robot Analysis. The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons, Inc.
,
New York
.
4.
Podhorodeski
,
R. P.
, and
Pittens
,
K. H.
,
1994
, “
A Class of Parallel Manipulators Based on Kinematically Simple Branches
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
908
914
.
5.
Daniali
,
H. R. M.
,
Zsombor-Murray
,
P. J.
, and
Angeles
,
J.
,
1995
, “
Direct Kinematics of Double-Triangular Parallel Manipulator
,”
Math. Pannonica
,
7
(
1
), pp.
79
96
.
6.
Daniali
,
H. R. M.
,
Zsombor-Murray
,
P. J.
, and
Angeles
,
J.
,
1995
, “
The Kinematics of Spatial Double-Triangular Parallel Manipulators
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
658
661
.
7.
Sorli
,
M.
,
Ferraresi
,
C.
,
Kolarski
,
M.
,
Borovac
,
B.
, and
Vukobratović
,
M.
,
1997
, “
Mechanics of Turin Parallel Robot
,”
Mech. Mach. Theory
,
32
(
1
), pp.
51
77
.
8.
Kim
,
W. K.
,
Byun
,
Y. K.
, and
Cho
,
H. S.
,
2001
, “
Closed-Form Forward-Position Solution for a 6-Dof 3-PPSP Parallel Mechanism and Its Implementation
,”
Int. J. Robot. Res.
,
20
(
1
), pp.
85
99
.
9.
Portman
,
V. T.
, and
Sandler
,
B. Z.
,
2002
, “
Tripod Robot With Cylindrically Actuated Limbs: Structure and Kinematics
,”
Mech. Mach. Theory
,
37
(
12
), pp.
1447
1463
.
10.
Monsarrat
,
B.
, and
Gosselin
,
C. M.
,
2003
, “
Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Robot. Autom.
,
19
(
6
), pp.
954
966
.
11.
Yang
,
G.
,
Chen
,
I. M.
,
Chen
,
W.
, and
Lin
,
W.
,
2004
, “
Kinematic Design of a Six-DOF Parallel-Kinematics Machine With Decoupled-Motion Architecture
,”
IEEE Trans. Robot. Autom.
,
20
(
5
), pp.
876
884
.
12.
Jin
,
Y.
,
Chen
,
I. M.
, and
Yang
,
G.
,
2006
, “
Kinematic Design of a 6-DOF Parallel Manipulator With Decoupled Translation and Rotation
,”
IEEE Trans. Robot.
,
22
(
3
), pp.
545
551
.
13.
Gan
,
D.
,
Liao
,
Q.
,
Dai
,
J. S.
, and
Wei
,
S.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
, pp.
1065
1072
.
14.
Gallardo-Alvarado
,
J.
,
2012
, “
Jerk Analysis of a Six-Degrees-of-Freedom Three-Legged Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
28
(
2
), pp.
220
226
.
15.
Toz
,
M.
, and
Kucuk
,
S.
,
2014
, “
Dimensional Optimization of 6-DOF 3-CCC Type Asymmetric Parallel Manipulator
,”
Adv. Robot.
,
28
(
9
), pp.
625
637
.
16.
Abeywardena
,
S.
, and
Chen
,
C.
,
2017
, “
Implementation and Evaluation of a Three-Legged Six-Degrees-of-Freedom Parallel Mechanism as an Impedance-Type Haptic Device
,”
IEEE-ASME Trans. Mechatron.
,
22
(
3
), pp.
1412
1422
.
17.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
J. Mech. Robot.
,
9
(
5
), p.
051003
.
18.
Li
,
W.
, and
Angeles
,
J.
,
2018
, “
The Design for Isotropy of a Class of Six-DOF Parallel-Kinematics Machines
,”
Mech. Mach. Theory
,
126
, pp.
34
48
.
19.
Li
,
W.
, and
Angeles
,
J.
,
2018
, “
The Design of a 3-CPS Parallel Robot for Maximum Dexterity
,”
Mech. Mach. Theory
,
122
, pp.
279
291
.
20.
Li
,
W.
, and
Angeles
,
J.
,
2018
, “
Full-Mobility 3-CCC Parallel-Kinematics Machines: Forward Kinematics, Singularity, Workspace and Dexterity Analyses
,”
Mech. Mach. Theory
,
126
, pp.
312
328
.
21.
Cherchelanov
,
E.
, and
Bonev
,
I. A.
,
2020
, “
A Novel Three-Legged 6-DOF Parallel Robot With Simple Kinematics
,”
Trans. Can. Soc. Mech. Eng.
,
44
(
4
), pp.
558
565
.
22.
Harada
,
T.
,
Friedlaender
,
T.
, and
Angeles
,
J.
,
2014
, “
The Development of an Innovative Two-DOF Cylindrical Drive: Design, Analysis and Preliminary Tests
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 5
, pp.
6338
6344
.
23.
Lou
,
Y.
,
Liu
,
G.
, and
Li
,
Z.
,
2008
, “
Randomized Optimal Design of Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
223
233
.
24.
Chen
,
C.
,
Heyne
,
W. J.
, and
Jackson
,
D.
,
2010
, “
A New 6-Dof 3-Legged Parallel Mechanism for Force-Feedback Interface
,”
Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
,
Qingdao, China
,
July 15–17
, pp.
539
544
.
25.
Isaksson
,
M.
,
Brogardh
,
T.
,
Watson
,
M.
,
Nahavandi
,
S.
, and
Crothers
,
P.
,
2012
, “
The Octahedral Hexarot—A Novel 6-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
55
, pp.
91
102
.
26.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Mills
,
R. Z. J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3×PPRS Parallel Kinematic Mechanism
,”
Robot. Comput. Integr. Manuf.
,
30
(
4
), pp.
369
378
.
27.
Chablat
,
D.
,
Baron
,
L.
, and
Jha
,
R.
,
2017
, “
Kinematics and Workspace Analysis of a 3PPPS Parallel Robot With U-shaped Base
,”
ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017).
,
Cleveland, OH
,
Aug. 6–9
.
28.
Wu
,
X.
, and
Bai
,
S.
,
2019
, “
Architectural Singularities of Parallel Mechanisms With Prismatic Joints Due to Special Designs of Platform Shapes
,”
Mech. Sci.
,
10
(
2
), pp.
449
464
.
29.
Gosselin
,
C.
,
Kong
,
X.
,
Foucault
,
S.
, and
Bonev
,
I.
,
2004
, “
A Fully Decoupled 3-DOF Translational Parallel Mechanism
,”
Parallel Kinematic Machines International Conference, Chemnitz, Germany.
,
Chemnitz, Germany
,
Apr. 20–21
, pp.
595
610
.
30.
Briot
,
S.
, and
Bonev
,
I. A.
,
2009
, “
Pantopteron: A New Fully Decoupled 3dof Translational Parallel Robot for Pick-and-Place Applications
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021001
.
31.
Li
,
W.
,
Gao
,
F.
, and
Zhang
,
J.
,
2005
, “
R-Cube, a Decoupled Parallel Manipulator Only With Revolute Joints
,”
Mech. Mach. Theory
,
40
(
4
), pp.
467
473
.
32.
Li
,
W.
,
Zhang
,
J.
, and
Gao
,
F.
,
2006
, “
P-Cube, a Decoupled Parallel Robot Only With Prismatic Pairs
,”
2006 2nd IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications
,
Beijing, China
,
Aug. 13–16
, pp.
1
4
.
33.
Wenger
,
P.
, and
Chablat
,
D.
,
2000
,
Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide
,
Springer Netherlands
,
Dordrecht
, pp.
305
314
.
34.
Gao
,
X. S.
,
Lei
,
D.
,
Liao
,
Q.
, and
Zhang
,
G. F.
,
2005
, “
Generalized Stewart–Gough Platforms and Their Direct Kinematics
,”
IEEE Trans. Robot.
,
21
(
2
), pp.
141
151
.
35.
Caro
,
S.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2012
, “
Non-Singular Assembly Mode Changing Trajectories of a 6-DOF Parallel Robot
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
,
Chicago, IL
,
Aug. 12–15
, pp
1245
1254
.
36.
Nanua
,
P.
,
Waldron
,
K. J.
, and
Murthy
,
V.
,
1990
, “
Direct Kinematic Solution of a Stewart Platform
,”
IEEE Trans. Robot. Autom.
,
6
(
4
), pp.
438
444
.
37.
Merlet
,
J. P.
,
1995
, “
Determination of the Orientation Workspace of Parallel Manipulators
,”
J. Intell. Robot. Syst.
,
13
(
2
), pp.
143
160
.
38.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
281
290
.
39.
Beyer
,
W. H.
,
1987
,
CRC Handbook of Mathematical Sciences
, Vol. 6,
CRC Press
,
Boca Raton, FL
.
40.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
41.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
157
182
.
42.
Pittens
,
K. H.
, and
Podhorodeski
,
R. P.
,
1993
, “
A Family of Stewart Platforms With Optimal Dexterity
,”
J. Robot. Syst.
,
10
(
4
), pp.
463
479
.
You do not currently have access to this content.