Abstract

This paper investigates the mobility and kinematics of the Hoberman switch-pitch ball, and particularly, its variant that does not resort to bevel gears. The ball variant is a general case of the Hoberman switch-pitch ball and constitutes the ball. This paper starts from examining the geometry of the ball variant and its composition, and decomposes it into loops containing eight-bar radially foldable linkages. To investigate the eight-bar radially foldable linkage, constraint matrices are developed using the screw-loop equation. This paper extends the study to the ball variant and investigates the singularity and various configurations based on the geometry and kinematics of the ball variant. This leads to the investigation of the Hoberman switch-pitch ball as a special case of the ball variant with bevel gears to simultaneously drive three joints in every vertex of the ball mechanism. The analysis is then followed by a numerical demonstration of the kinematic characteristics of the Hoberman switch-pitch ball.

References

1.
Wohlhart
,
K.
, 1993, “
Heureka Octahedron and Brussels Folding Cube as Special Cases of the Turing Tower
,”
Proceedings of the Sixth International Symposium “Teoria si Practica Mecanismelor”
, Vol.
2
, pp.
303
311
.
2.
Wohlhart
,
K.
, 1995, “
New Overconstrained Spheroidal Linkages
,”
Proceedings of the Ninth World Congress on the Theory of Machines and Mechanisms
, Milano, Italy, Vol.
1
, pp.
149
153
.
3.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
375
382
.
4.
Zhang
,
L.
, and
Dai
,
J. S.
, 2009, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
1
), p.
011012
.
5.
Agrawal
,
S. K.
,
Kumar
,
S.
,
Yim
,
M.
, and
Suh
,
J. W.
, 2001, “
Polyhedral Single Degree-of-Freedom Expanding Structures
,”
Proceedings of 2001 IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3338
3343
.
6.
Elwood
,
B. M.
,
Butts
,
C. G.
, and
Tipton
,
W. J.
, 2002, “
Validation Device and Method
,” U.S. Patent App. 10/156,801.
7.
Hoberman
,
C.
, 2002, “
Folding Covering Panels for Expanding Structures
,” U.S. Patent App. 10/303,550.
8.
Barbour
,
R. L.
, and
Schmitz
,
C. H.
, 2004, “
System and Method for Tomographic Imaging of Dynamic Properties of a Scattering Medium
,” U.S. Patent No. 6,795,195.
9.
Winder
,
B.
,
Magleby
,
S.
, and
Howell
,
L. L.
, 2009, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021009
.
10.
Jacobsen
,
J.
,
Winder
,
B.
,
Howell
,
L. L.
, and
Magleby
,
S.
, 2010, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
1942-4302,
2
(
1
), p.
011003
.
11.
Dai
,
J. S.
, and
Cannella
,
F.
, 2008, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), pp.
022305
.
12.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G.
, 2004, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
0094-114X,
39
(
4
), pp.
445
458
.
13.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
(
5
), pp.
633
651
.
14.
Baker
,
B.
, 2005, “
Using an Expandable Toy in Discussing Rotational Motion
,”
Phys. Teach.
0031-921X,
43
(
4
), pp.
247
247
.
15.
Eng
,
M.
,
Camarata
,
K.
,
Do
,
E. Y.
, and
Gross
,
M. D.
, 2006, “
FlexM: Designing a Physical Construction Kit for 3D Modeling
,”
International Journal of Architectural Computing
1478-0771,
4
(
2
), pp.
27
47
.
16.
Patel
,
J.
, and
Ananthasuresh
,
G. K.
, 2006, “
Kinematic Theory of Planer Hoberman and Other Foldable Mechanisms
,”
Proceedings of the IDETC/CIE 2006 ASME International Design Engineering Technical Conferences and Mechanisms and Robotics Conference
, Philadelphia, PA, Sept. 10–13.
17.
Patel
,
J.
, and
Ananthasuresh
,
G. K.
, 2005, “
Kinematics of Radially Foldable Mechanisms Using Algebraic Loci
,”
Proceedings of the Third Aerospace and Related Mechanisms (ARMS 2005) Conference of INSARM
, Bangalore, India, Nov. 16–19.
18.
Patel
,
J.
, and
Ananthasuresh
,
G. K.
, 2007, “
A Kinematic Theory for Radially Foldable Planar Linkages
,”
Int. J. Solids Struct.
0020-7683,
44
(
18–19
), pp.
6279
6298
.
19.
You
,
Z.
, 2007, “
Motion Structures Extend Their Reach
,”
Mater. Today
1369-7021,
10
(
12
), pp.
52
57
.
20.
Hoberman
,
C.
, 2004, “
Geared Expanding Structures
,” U.S. Patent No. US007464503B2.
21.
Kutzbach
,
K.
, 1937, “
Quer-und Winkelbewegliche Gleichganggelenke fur Wellenleitunger
,”
VDI Z.
,
81
, pp.
889
892
.
22.
Bennett
,
G. T.
, 1903, “
A New Mechanism
,”
Engineering (London)
0013-7782,
76
, pp.
777
778
.
23.
Bricard
,
R.
, 1927,
Lecons De Cinématique
,
Tome II Cinématique Appliquée
,
Gauthier-Villars, Paris
, Vol.
2
, pp.
7
12
.
24.
Goldberg
,
M.
, 1943, “
New 5-Bar and 6-Bar Linkages in Three Dimensions
,”
ASME J. Mech. Des.
0161-8458,
65
, pp.
649
661
.
25.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
0022-2569,
1
(
2
), pp.
101
114
.
26.
Davies
,
T. H.
, and
Primrose
,
E. J. F.
, 1971, “
An Algebra for the Screw System of Pairs of Bodies in a Kinematic Chain
,”
Proceedings of the Third World Congress for the Theory of Machines and Mechanisms
, Kupary, Yougoslavia. Vol.
D-14
, pp.
199
212
.
27.
Baker
,
J. E.
, 1980, “
On Relative Freedom Between Links in Kinematic Chains With Cross-Jointing
,”
Mech. Mach. Theory
0094-114X,
15
(
5
), pp.
397
413
.
28.
Baker
,
J. E.
, 1981, “
On Mobility and Relative Freedoms in Multiloop Linkages and Structures
,”
Mech. Mach. Theory
0094-114X,
16
(
6
), pp.
583
597
.
29.
Davies
,
T. H.
, 1981, “
Kirchhoff’s Circulation Law Applied to Multi-Loop Kinematic Chains
,”
Mech. Mach. Theory
0094-114X,
16
(
3
), pp.
171
183
.
30.
Huang
,
Z.
, and
Li
,
Q. C.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using Constraint-Synthesis Method
,”
Int. J. Robot. Res.
0278-3649,
22
(
1
), pp.
59
79
.
31.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2004, “
Screw System Analysis of Parallel Mechanisms and Applications to Constraint and Mobility Study
,”
ASME
Paper No. DETC2004-57604.
32.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
220
229
.
33.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null Space Construction Using Cofactors From a Screw Algebra Context
,”
Proc. R. Soc. London, Ser. A
0950-1207,
458
(
2024
), pp.
1845
1866
.
34.
Wohlhart
,
K.
, 2004, “
Screw Spaces and Connectivities in Multiloop Linkages
,”
On Advances in Robot Kinematics
,
J.
Lenarčič
and
C.
Galletti
, eds.,
Kluwer
,
The Netherlands
, pp.
97
104
.
35.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q
, 2009, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
4
), p.
041007
.
36.
Gogu
,
G.
, 2005, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
0094-114X,
40
(
9
), pp.
1068
1097
.
37.
Angeles
,
J.
, and
Gosselin
,
C.
, 1988, “
Détermination du degree de liberté des châines cinématiques
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
4
(
12
), pp.
219
226
.
38.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
You do not currently have access to this content.