Abstract

Redundant constraints are generally avoided in mechanism design because they can lead to binding or loss in expected mobility. However, in certain distributed-compliance flexure mechanism geometries, this problem is mitigated by the phenomenon of elastic averaging. Elastic averaging is a design paradigm that, in contrast with exact constraint design principles, makes deliberate and effective use of redundant constraints to improve performance and robustness. The principle of elastic averaging and its advantages are illustrated in this paper by means of a three-beam parallelogram flexure mechanism, which represents an overconstrained geometry. In a lumped-compliance configuration, this mechanism is prone to binding in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear elastokinematic effect in the constituent beams is shown to play an important role in analytically predicting the consequences of overconstraint and provides a mathematical basis for elastic averaging. A generalized beam constraint model is used for these predictions so that varying degrees of distributed compliance are captured using a single geometric parameter. The closed-form analytical results are validated against finite element analysis, as well as experimental measurements.

1.
Maxwell
,
J. C.
, 1980,
The Scientific Papers of James Clerk Maxwell
, Vol.
2
,
Cambridge University Press
,
London
.
2.
Pollard
,
A. F. C.
, 1929,
The Kinematic Design of Couplings in Instrument Design
,
Hilger and Watts
,
London
.
3.
Whitehead
,
T. N.
, 1934,
The Design and Use of Instruments and Accurate Mechanisms
,
Macmillan
,
New York
.
4.
Furse
,
J. E.
, 1981, “
Kinematic Design of Fine Mechanisms in Instruments
,”
J. Phys. E
0022-3735,
14
, pp.
264
272
.
5.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
, 2001,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
6.
Ullman
,
D. G.
, 2003,
The Mechanical Design Process
, 3rd ed.,
McGraw-Hill
,
New York
.
7.
Whitney
,
D. E.
, 2004,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development
,
Oxford University Press
,
New York
.
8.
Whitehouse
,
D. J.
, 2003,
Handbook of Surface and Nanometrology
,
Institute of Physics
,
Bristol
.
9.
Moore
,
W. R.
, 1970,
Foundations of Mechanical Accuracy
,
Moore Tool Co.
,
Bridgeport, CT
.
10.
Skakoon
,
J. G.
, 2008,
The Elements of Mechanical Design
,
ASME
,
New York
.
11.
Slocum
,
A. H.
, 1992,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
12.
Hale
,
L. C.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
13.
Blanding
,
D. K.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
,
New York
.
14.
Grubler
,
M.
, 1917,
Getriebelehre
,
Springer
,
Berlin, Germany
.
15.
Hopkins
,
J. B.
, 2005, “
Design of Parallel Systems via Freedom and Constraint Topologies (FACT)
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
16.
Jones
,
R. V.
, 1988,
Instruments and Experiences: Papers on Measurement and Instrument Design
,
Wiley
,
New York
.
17.
Awtar
,
S.
, 2004,
Analysis and Synthesis of Planer Kinematic XY Mechanisms
, Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
625
639
.
19.
Bonin
,
W. A.
, 2001, “
Microactuator Suspension With Multiple Narrow Beams
,” U.S. Patent No. 6,282,066.
20.
Trease
,
B. P.
,
Moon
,
Y. -M.
, and
Kota
,
S.
, 2005, “
Design of Large Displacement Compliant Joints
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
788
798
.
21.
Awtar
,
S.
, and
Sevincer
,
E.
, 2006, “
Elastic Averaging in Flexure Mechanisms: A Multi-Parallelogram Flexure Case-Study
,”
ASME
Paper No. 99752.
22.
Wilson
,
E. B.
, Jr.
, 1952,
An Introduction to Scientific Research
,
McGraw-Hill
,
New York
.
23.
Jones
,
R. V.
, 1962, “
Some Uses of Elasticity in Instrument Design
,”
J. Sci. Instrum.
0950-7671,
39
, pp.
193
203
.
24.
Gardner
,
J. W.
, and
Hingle
,
H. T.
, 1991,
From Instrumentation to Nanotechnology
,
Gordon Breach
,
Philadelphia
.
25.
Willoughby
,
P.
, 2005, “
Elastically Averaged Precision Alignment
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
26.
Slocum
,
A. H.
, and
Weber
,
A. C.
, 2003, “
Precision Passive Mechanical Alignment of Wafers
,”
J. Microelectromech. Syst.
1057-7157,
12
(
6
), pp.
826
834
.
27.
Slocum
,
A. H.
,
Basaran
,
M.
,
Cortesi
,
R.
, and
Anastasios
,
J. H.
, 2003, “
Linear Motion Carriage With Aerostatic Bearings Preloaded by Inclined Iron Core Linear Electric Motor
,”
Precis. Eng.
0141-6359,
27
, pp.
382
394
.
28.
Jiang
,
L.
, 2007, “
A Novel Method for Nanoprecision Alignment in Wafer Bonding Application
,”
J. Micromech. Microeng.
0960-1317,
17
(
7
), pp.
S61
S67
.
29.
Jurcevich
,
B. K.
, 1992, “
Structural Mechanics of the Solar—A Soft X-Ray Telescope
,”
Proc. SPIE
0277-786X,
1690
, pp.
399
434
.
30.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
31.
Awtar
,
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Non-Linear Load-Displacement Formulation
,”
ASME J. Mech. Des.
0161-8458,
132
(
8
), p.
081008
.
32.
Awtar
,
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
0161-8458,
132
(
8
), p.
081009
.
33.
Oh
,
Y. S.
, 2008, “
Synthesis of Multistable Equilibrium Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
You do not currently have access to this content.