A time-varying instantaneous screw characterizes the motion of a rigid body. The kinematic differential equation expresses the path taken by any point on that rigid body in terms of this screw. Therefore, when a revolute joint is attached to a moving link in a planar kinematic chain, the path taken by the center of that revolute joint is the solution to such an equation. The instantaneous screw of a link in that chain is in turn determined by the action of the joints connecting that link to ground, where the contribution of each joint to that instantaneous screw is determined by its actuation rate and center point. Substituting power series expansions for joint rates into the kinematic differential equations for joint centers, and expressing loop closure as a linear constraint on the instantaneous screws of the links, a recurrence relation is established that solves for the coefficients in those power series. The resulting solution is applied to determine the equilibrium pendulum tilt of the United Aircraft TurboTrain. Comparing that power series approximation with an exact kinematic analysis shows convergence properties of the series.

1.
Milenkovic
,
P.
, 2010, “
Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement
,”
ASME J. Mech. Des.
0161-8458,
132
(
4
), p.
041001
.
2.
Milenkovic
,
P.
, 2010, “
Mobility of Multi-Chain Platform Mechanisms Under Differential Displacement
,”
ASME J. Mech. Rob.
1942-4302,
2
(
3
), p.
031004
.
3.
Karsai
,
G.
, 2001, “
Method for the Calculation of the Combined Motion Time Derivatives of Optional Order and Solution for the Inverse Kinematic Problems
,”
Mech. Mach. Theory
0094-114X,
36
(
2
), pp.
261
272
.
4.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
, 1999, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
0094-114X,
34
(
4
), pp.
559
586
.
5.
Karger
,
A.
, 1996, “
Singularity Analysis of Serial Robot-Manipulators
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
520
525
.
6.
Müller
,
A.
, and
Rico
,
J. M.
, 2008,
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarčič
and
P.
Wenger
, eds.,
Springer
,
New York
, pp.
215
224
.
7.
Sommer
,
H. J.
, III
, 2008, “
Jerk Analysis and Axode Geometry of Spatial Linkages
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
042301
.
8.
Cervantes-Sánchez
,
J. J.
,
Rico-Martínez
,
J. M.
, and
González-Montiel
,
G.
, 2009, “
The Differential Calculus of Screws: Theory, Geometrical Interpretation, and Applications
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
223
(
6
), pp.
1449
1468
.
9.
Ceccarelli
,
M.
, and
Vinciguerra
,
A.
, 2000, “
Approximate Four-Bar Circle-Tracing Mechanisms: Classical and New Synthesis
,”
Mech. Mach. Theory
0094-114X,
35
(
11
), pp.
1579
1599
.
10.
Kane
,
T. R.
, 1973, “
Solution of Kinematical Differential Equations for a Rigid Body
,”
ASME Trans. J. Appl. Mech.
0021-8936,
4
, pp.
109
113
.
11.
De Schutter
,
J.
, 2010, “
Invariant Description of Rigid Body Motion Trajectories
,”
ASME J. Mech. Rob.
1942-4302,
2
, p.
011004
.
12.
Simionescu
,
P. A.
,
Talpasanu
,
I.
, and
Di Gregorio
,
R.
, 2010, “
Instant-Center Based Force Transmissivity and Singularity Analysis of Planar Linkages
,”
ASME J. Mech. Rob.
1942-4302,
2
(
2
), p.
021011
.
13.
Koetsier
,
T.
, 1986, “
From Kinematically Generated Curves to Instantaneous Invariants: Episodes in the History of Instantaneous Planar Kinematics
,”
Mech. Mach. Theory
0094-114X,
21
(
6
), pp.
489
498
.
14.
Stanišić
,
M. M.
,
Lodi
,
K.
, and
Pennock
,
G. R.
, 1992, “
The Application of Curvature Theory to the Trajectory Generation Problem of Robot Manipulators
,”
ASME J. Mech. Des.
0161-8458,
114
, pp.
677
680
.
15.
Pennock
,
G. R.
, and
Kinzel
,
E. C.
, 2004, “
Graphical Technique to Locate the Center of Curvature of a Coupler Point Trajectory
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
1000
1005
.
16.
Fayet
,
M.
, 2002, “
Bobillier Formula as a Fundamental Law in Planar Motion
,”
Z. Angew. Math. Mech.
0044-2267,
82
(
3
), pp.
207
210
.
17.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
18.
Wongratanaphisan
,
T.
, and
Cole
,
M. O. T.
, 2008, “
Analysis of a Gravity Compensated Four-Bar Linkage Mechanism With Linear Spring Suspension
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
011006
.
19.
Lin
,
P. Y.
,
Shieh
,
W. B.
, and
Chen
,
D. Z.
, 2009, “
Design of Perfectly Statically Balanced One-DOF Planar Linkages With Revolute Joints Only
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
051004
.
20.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
, 1975,
Digital Signal Processing
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Golub
,
G. H.
, and
Reinsch
,
C.
, 1971, “
Singular Value Decomposition and Lease Squares Solutions
,”
Handbook for Automatic Computation Volume II: Linear Algebra
,
J. H.
Wilkinson
and
C.
Reinsch
, eds.,
Springer
,
New York
, pp.
134
151
, Chap. I/10.
22.
Shron
,
J.
, 2008,
Turbotrain: A Journey
,
Rapido Trains
,
Toronto, Canada
.
23.
Pearson
,
J. T.
,
Goodall
,
R. M.
, and
Pratt
,
I.
, 1998, “
Control System Studies of an Active Anti-Roll Bar Tilt System for Railway Vehicles
,”
Proc. Inst. Mech. Eng., F J. Rail Rapid Transit
0954-4097,
212
(
1
), pp.
43
60
.
24.
Cripe
,
A. R.
, 1969, “
Articulated Car Single Axle Truck
,” U.S. Patent No. 3,424,105.
25.
Chace
,
M. A.
, 1963, “
Vector Analysis of Linkages
,”
ASME J. Eng. Ind.
0022-0817,
85
, pp.
289
297
.
26.
Uicker
,
J. J.
, Jr.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
, 2003,
Theory of Machines and Mechanisms
,
Oxford University Press
,
New York
.
You do not currently have access to this content.