Noninvasive blood glucose (NIBG) measurement technique has been explored for the last three decades to facilitate diabetes management. Photoplethysmogram (PPG) signal may be used to measure the variations in blood glucose concentration. However, the literature reveals that physiological perturbations such as temperature, skin moisture, and sweat lead to less accurate NIBG measurements. The task of minimizing the effect of these perturbations for accurate measurements is an important research area. Therefore, in the present work, galvanic skin response (GSR) and temperature measurements along with PPG were used to measure blood glucose noninvasively. The data extracted from the sensors were used to estimate blood glucose concentration with the help of two machine learning (ML) techniques, i.e., multiple linear regression (MLR) and artificial neural network (ANN). The accuracy of proposed multisensor system was evaluated by pairing and comparing noninvasive measurements with invasively measured readings. The study was performed on 50 nondiabetic subjects with body mass index (BMI) 27.3 ± 3 kg/m2. The results revealed that multisensor NIBG measurement system significantly improves mean absolute prediction error and correlation coefficient in comparison to the techniques reported in the literature.

References

1.
Diabetes.co.uk, 2017, “
Blood Sugar Level Ranges
,” Diabetes Digital Media Ltd., Coventry, UK, accessed May 4, 2017, https://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html
2.
American Diabetes Association
,
2009
, “
Diagnosis and Classification of Diabetes Mellitus
,”
Diabetes Care
,
32
(Suppl.
1
), pp.
S62
S67
.
3.
Sadikot
,
S.
,
2016
, “
IDFs Global Voice in the Diabetes Landscape
,”
Diabetes. Res. Clin. Pract.
,
114
, pp. 180–181.
4.
WHO,
2014
, “
Global Status Report on Non Communicable Diseases
,” World Health Organization, Geneva, Switzerland, accessed May 5, 2017, http://www.who.int/nmh/publications/ncd-status-report-2014/en/
5.
Yadav
,
J.
,
Rani
,
A.
,
Singh
,
V.
, and
Murari
,
B. M.
,
2014
, “
Near-Infrared LED Based Non-Invasive Blood Glucose Sensor
,”
International Conference on Signal Processing and Integrated Networks
(
SPIN
), Noida, India, Feb. 20–21, pp.
591
594
.
6.
Nilsson
,
G. E.
,
Tenland
,
T.
, and
Öberg
,
P. A.
,
1982
, “
Laser-Doppler Methods for the Assessment of Microcirculatory Blood Flow
,”
Trans. Inst. Meas. Control
,
4
(
2
), pp.
109
112
.
7.
Liakat
,
S.
,
Bors
,
K. A.
,
Xu
,
L.
,
Woods
,
C. M.
,
Doyle
,
J.
, and
Gmachl
,
C. F.
,
2014
, “
Noninvasive In Vivo Glucose Sensing on Human Subjects Using Mid-Infrared Light
,”
Biomed. Opt. Express
,
5
(
7
), pp.
2397
2404
.
8.
Tamada
,
J. A.
,
Garg
,
S.
,
Jovanovic
,
L.
,
Pitzer
,
K. R.
,
Fermi
,
S.
,
Potts
,
R. O.
, and
Cygnus Research Team
,
1999
, “
Noninvasive Glucose Monitoring: Comprehensive Clinical Results
,”
JAMA
,
282
(
19
), pp.
1839
1844
.
9.
Luo
,
Y.
,
An
,
L.
,
Ma
,
Z.
,
Liu
,
R.
, and
Xu
,
K.
,
2006
, “
Discussion on Floating-Reference Method for Noninvasive Measurement of Blood Glucose With Near-Infrared Spectroscopy
,”
Proc. SPIE
,
6094
, p.
60940K
.
10.
Yadav
,
J.
,
Rani
,
A.
,
Singh
,
V.
, and
Murari
,
B. M.
,
2015
, “
Comparative Study of Different Measurement Sites Using NIR Based Non-Invasive Glucose Measurement System
,”
Procedia Comput. Sci.
,
70
, pp.
469
475
.
11.
Yadav
,
J.
,
Rani
,
A.
,
Singh
,
V.
, and
Murari
,
B. M.
,
2015
, “
Prospects and Limitations of Non-Invasive Blood Glucose Monitoring Using Near-Infrared Spectroscopy
,”
Biomed. Signal Process. Control
,
18
, pp.
214
227
.
12.
Zanon
,
M.
,
Sparacino
,
G.
,
Facchinetti
,
A.
,
Talary
,
M. S.
,
Mueller
,
M.
,
Caduff
,
A.
, and
Cobelli
,
C.
,
2013
, “
Non-Invasive Continuous Glucose Monitoring With Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness
,”
Sensors
,
13
(
6
), pp.
7279
7295
.
13.
Caduff
,
A.
,
Talary
,
M. S.
,
Mueller
,
M.
,
Dewarrat
,
F.
,
Klisic
,
J.
,
Donath
,
M.
,
Heinemann
,
L.
, and
Stahel
,
W. A.
,
2009
, “
Non-Invasive Glucose Monitoring in Patients With Type 1 Diabetes: A Multisensor System Combining Sensors for Dielectric and Optical Characterisation of Skin
,”
Biosens. Bioelectron.
,
24
(
9
), pp.
2778
2784
.
14.
Monte-Moreno
,
E.
,
2011
, “
Non-Invasive Estimate of Blood Glucose and Blood Pressure From a Photoplethysmograph by Means of Machine Learning Techniques
,”
Artif. Intell. Med.
,
53
(
2
), pp.
127
138
.
15.
Chowdhury
,
M. K.
,
Srivastava
,
A.
,
Sharma
,
N.
, and
Sharma
,
S.
,
2015
, “
Noninvasive Blood Glucose Measurement Utilizing a Newly Designed System Based on Modulated Ultrasound and Infrared Light
,”
Int. J. Diabetes Dev. Countries
,
36
(4), pp.
439
448
.
16.
Zhang
,
W.
,
Liu
,
R.
,
Zhang
,
W.
,
Jia
,
H.
, and
Xu
,
K.
,
2013
, “
Discussion on the Validity of NIR Spectral Data in Non-Invasive Blood Glucose Sensing
,”
Biomed. Opt. Express
,
4
(
6
), pp.
789
802
.
17.
Zhang
,
X.
, and
Yeo
,
J. H.
,
2009
, “
Temperature Influence on Non-Invasive Blood Glucose Measurement
,”
Proc. SPIE
,
7186
, p. 71860R.
18.
Ramasahayam
,
S.
,
Haindavi
,
K. S.
, and
Chowdhury
,
S. R.
,
2015
, “
Noninvasive Estimation of Blood Glucose Concentration Using Near Infrared Optodes
,”
Sensing Technology: Current Status and Future Trends IV
,
Springer International Publishing
, Cham, Switzerland, pp.
67
82
.,
19.
Ramasahayam, S., Koppuravuri, S. H., Arora, L., and Chowdhury, S. R., 2015, “
Noninvasive Blood Glucose Sensing Using Near Infra-Red Spectroscopy and Artificial Neural Networks Based on Inverse Delayed Function Model of Neuron
,”
J. Medical Systems
,
39
(1), p.
166
.
20.
Yamakoshi
,
K.
, and
Yamakoshi
,
Y.
,
2006
, “
Pulse Glucometry: A New Approach for Noninvasive Blood Glucose Measurement Using Instantaneous Differential Near-Infrared Spectrophotometry
,”
J. Biomed. Opt.
,
11
(
5
), p.
054028
.
21.
Çinar
,
Y.
,
Şenyol
,
A. M.
, and
Duman
,
K.
,
2001
, “
Blood Viscosity and Blood Pressure: Role of Temperature and Hyperglycemia
,”
Am. J. Hypertens.
,
14
(
5
), pp.
433
438
.
22.
Ducher
,
M.
,
Cerutti
,
C.
,
Gustin
,
M. P.
,
Abou-Amara
,
S.
,
Thivolet
,
C.
,
Laville
,
M.
,
Paultre
,
C. Z.
, and
Fauvel
,
J. P.
,
1999
, “
Noninvasive Exploration of Cardiac Autonomic Neuropathy. Four Reliable Methods for Diabetes?
,”
Diabetes Care
,
22
(
3
), pp.
388
393
.
23.
Van Ravenswaaij-Arts
,
C. M.
,
Kollee
,
L. A.
,
Hopman
,
J. C.
,
Stoelinga
,
G. B.
, and
van Geijn
,
H. P.
,
1993
, “
Heart Rate Variability
,”
Ann. Intern. Med.
,
118
(
6
), pp.
436
447
.
24.
Petrofsky
,
J. S.
, and
McLellan
,
K.
,
2009
, “
Galvanic Skin Resistance—A Marker for Endothelial Damage in Diabetes
,”
Diabetes Technol. Ther.
,
11
(
7
), pp.
461
467
.
25.
Irace
,
C.
,
Carallo
,
C.
,
Scavelli
,
F.
,
Esposito
,
T.
,
De Franceschi
,
M. S.
,
Tripolino
,
C.
, and
Gnasso
,
A.
,
2014
, “
Influence of Blood Lipids on Plasma and Blood Viscosity
,”
Clin. Hemorheol. Microcirc.
,
57
(
3
), pp.
267
274
.
26.
Palanisamy
,
K.
,
Murugappan
,
M.
, and
Yaacob
,
S.
,
2013
, “
Multiple Physiological Signal-Based Human Stress Identification Using Non-Linear Classifiers
,”
Elektron. Elektrotech.
,
19
(
7
), pp.
80
85
.
27.
Conesa
,
J.
,
1995
, “
Electrodermal Palmar Asymmetry and Nostril Dominance
,”
Perceptual Mot. Skills
,
80
(
1
), pp.
211
216
.
28.
ADINSTRUMENTS, 2000, “
Front-End Signal Conditioners
,” ADInstruments Pty Ltd., Sydney, Australia, accessed May 5, 2017, http://cdn.adinstruments.com/adi-web/manuals/Front-end_Signal_Conditioners_OG.pdf
29.
Ramasahayam
,
S.
, and
Chowdhury
,
S. R.
,
2016
, “
Non Invasive Estimation of Blood Urea Concentration Using Near Infrared Spectroscopy
,”
Int. J. Smart Sens. Intell. Syst.
,
9
(
2
), pp.
449
467
.
30.
Ghobadian
,
B.
,
Rahimi
,
H.
,
Nikbakht
,
A. M.
,
Najafi
,
G.
, and
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network
,”
Renewable Energy
,
34
(
4
), pp.
976
982
.
31.
Gaidhane
,
V. H.
,
Hote
,
Y. V.
, and
Singh
,
V.
,
2012
, “
Nonrigid Image Registration Using Efficient Similarity Measure and Levenberg-Marquardt Optimization
,”
Biomed. Eng. Lett.
,
2
(
2
), pp.
118
123
.
32.
Gaidhane
,
V. H.
,
Hote
,
Y. V.
, and
Singh
,
V.
,
2016
, “
Emotion Recognition Using Eigenvalues and Levenberg–Marquardt Algorithm-Based Classifier
,”
Sādhanā
,
41
(
4
), pp.
1
9
.https://link.springer.com/article/10.1007/s12046-016-0479-6
33.
Rani
,
A.
,
Singh
,
V.
, and
Gupta
,
J. R. P.
,
2013
, “
Development of Soft Sensor for Neural Network Based Control of Distillation Column
,”
ISA Trans.
,
52
(
3
), pp.
438
449
.
34.
Rani
,
A.
,
Singh
,
V.
, and
Gupta
,
J. R. P.
,
2011
, “
Soft Sensor Based on Adaptive Linear Network for Distillation Process
,”
Int. J. Comput. Appl.
,
36
(
1
), pp.
39
45
.http://www.ijcaonline.org/archives/volume36/number1/4458-6244
35.
Troy
,
T. L.
, and
Thennadil
,
S. N.
,
2001
, “
Optical Properties of Human Skin in the Near Infrared Wavelength Range of 1000 to 2200 Nm
,”
J. Biomed. Opt.
,
6
(
2
), pp.
167
176
.
36.
Yadav
,
A. K.
,
Malik
,
H.
, and
Chandel
,
S. S.
,
2014
, “
Selection of Most Relevant Input Parameters Using WEKA for Artificial Neural Network Based Solar Radiation Prediction Models
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
509
519
.
37.
Couceiro
,
R.
,
Carvalho
,
P.
,
Paiva
,
R. P.
,
Henriques
,
J.
, and
Muehlsteff
,
J.
,
2012
, “
Detection of Motion Artifacts in Photoplethysmographic Signals Based on Time and Period Domain Analysis
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), San Diego, CA, Aug. 28–Sept. 1, pp.
2603
2606
.
38.
Han
,
H.
, and
Kim
,
J.
,
2012
, “
Artifacts in Wearable Photoplethysmographs During Daily Life Motions and Their Reduction With Least Mean Square Based Active Noise Cancellation Method
,”
Comput. Biol. Med.
,
42
(
4
), pp.
387
393
.
39.
Hwang
,
S.
,
Seo
,
J.
,
Jebelli
,
H.
, and
Lee
,
S.
,
2016
, “
Feasibility Analysis of Heart Rate Monitoring of Construction Workers Using a Photoplethysmography (PPG) Sensor Embedded in a Wristband-Type Activity Tracker
,”
Autom. Constr.
,
71
(Pt. 2), pp.
372
381
.
You do not currently have access to this content.