Abstract

A new two-piece dental implant, having a replaceable thin titanium sleeve in its 5 mm crestal part was designed. The use of a sleeve of near 0.2 mm thickness reduces implant diameter by 0.4 mm. Narrower diameter implants may increase the likelihood of component fracture in dental implant systems. 14 two-piece dental implants, with 25 deg abutment angle were subjected to a dynamic fatigue test according to DIN EN ISO 14801. The highest load at which a runout (nonfailure) occurred at 5 × 106 cycles, amounted to 575 N. This load level was confirmed with n = 3 samples. The Wöhler curve was determined. Accordingly, the runout at 106 cycles can be anticipated as 625 N. The new two-piece Implant B™ design using a 0.2 mm sleeve is compatible with the DIN EN ISO 14801 standards for dimensions of 4.2 mm diameter and 13 mm length. It withstands dynamic fatigue test at least as good as any other standard endosseous implant.

References

1.
Xie
,
C.
,
Lu
,
H.
,
Li
,
W.
,
Chen
,
F. M.
, and
Zhao
,
Y. M.
,
2012
, “
The Use of Calcium Phosphate-Based Biomaterials in Implant Dentistry
,”
J Mater. Sci.-Mater. Med.
,
23
(
3
), pp.
853
862
.10.1007/s10856-011-4535-9
2.
Brånemark
,
P. I.
,
Hansson
,
B. O.
,
Adell
,
R.
,
Breine
,
U.
,
Lindstrom
,
J.
,
Hallen
,
O.
, and
Ohman
,
A.
,
1977
, “
Osseointegrated Implants in the Treatment of the Edentulous Jaw. Experience From a 10-Year Period
,”
Scand. J. Plast. Reconstr. Surg. Suppl
,
16
, pp.
1
132
.https://pubmed.ncbi.nlm.nih.gov/356184/
3.
Binon
,
P. P.
,
2000
, “
Implants and Components: Entering the New Millennium
,”
Int. J. Oral. Maxillofac. Implants
,
15
(
1
), pp.
76
94
.https://pubmed.ncbi.nlm.nih.gov/10697942/
4.
Masuda
,
T.
,
Yliheikkila
,
P. K.
,
Felton
,
D. A.
, and
Cooper
,
L. F.
,
1998
, “
Generalizations Regarding the Process and Phenomenon of Osseointegration. Part I. In Vivo Studies
,”
Int. J. Oral. Maxillofac. Implants
,
13
(
1
), pp.
17
29
.https://pubmed.ncbi.nlm.nih.gov/9509776/
5.
Gapski
,
R.
,
Wang
,
H. L.
,
Mascarenhas
,
P.
, and
Lang
,
N. P.
,
2003
, “
Critical Review of Immediate Implant Loading
,”
Clin. Oral. Implants. Res.
,
14
(
5
), pp.
515
527
.10.1034/j.1600-0501.2003.00950.x
6.
Prasad
,
D. K.
,
Shetty
,
M.
,
Bansal
,
N.
, and
Hegde
,
C.
,
2011
, “
Crestal Bone Preservation: A Review of Different Approaches for Successful Implant Therapy
,”
Indian. J. Dent. Res.
,
22
(
2
), pp.
317
323
.10.4103/0970-9290.84311
7.
Henry
,
P. J.
, and
Liddelow
,
G. J.
,
2008
, “
Immediate Loading of Dental Implants
,”
Aust. Dent. J.
,
53
(
s1
), pp.
S69
S81
.10.1111/j.1834-7819.2008.00044.x
8.
Esposito
,
M.
,
Hirsch
,
J. M.
,
Lekholm
,
U.
, and
Thomsen
,
P.
,
1998
, “
Biological Factors Contributing to Failures of Osseointegrated Oral Implants. (I). Success Criteria and Epidemiology
,”
Eur. J. Oral. Sci.
,
106
(
1
), pp.
527
551
.10.1046/j.0909-8836..t01-2-.x
9.
Marco
,
F.
,
Milena
,
F.
,
Gianluca
,
G.
, and
Vittoria
,
O.
,
2005
, “
Peri-Implant Osteogenesis in Health and Osteoporosis
,”
Micron.
,
36
(
7–8
), pp.
630
644
.10.1016/j.micron.2005.07.008
10.
Esposito
,
M.
,
Hirsch
,
J. M.
,
Lekholm
,
U.
, and
Thomsen
,
P.
,
1998
, “
Biological Factors Contributing to Failures of Osseointegrated Oral Implants. (II). Etiopathogenesis
,”
Eur. J. Oral. Sci.
,
106
(
3
), pp.
721
64
.10.1046/j.0909-8836..t01-6-.x
11.
Berglundh
,
T.
,
Wennström
,
J. L.
, and
Lindhe
,
J.
,
2018
, “
Long-Term Outcome of Surgical Treatment of Peri-Implantitis. A 2-11-Year Retrospective Study
,”
Clin. Oral. Implants. Res.
,
29
(
4
), pp.
404
410
.10.1111/clr.13138
12.
Persson
,
L. G.
,
Berglundh
,
T.
,
Lindhe
,
J.
, and
Sennerby
,
L.
,
2001
, “
Re-Osseointegration After Treatment of Peri-Implantitis at Different Implant Surfaces. An Experimental Study in the Dog
,”
Clin. Oral. Implants. Res.
,
12
(
6
), pp.
595
603
.10.1034/j.1600-0501.2001.120607.x
13.
Mardinger
,
O.
,
Ben Zvi
,
Y.
,
Chaushu
,
G.
,
Nissan
,
J.
, and
Manor
,
Y.
,
2012
, “
A Retrospective Analysis of Replacing Dental Implants in Previously Failed Sites
,”
Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol.
,
114
(
3
), pp.
290
293
.10.1016/j.tripleo.2011.07.010
14.
Schutz
,
W.
,
1996
, “
A History of Fatigue
,”
Eng. Fract. Mech.
,
54
(
2
), pp.
263
300
.10.1016/0013-7944(95)00178-6
15.
Baldissara
,
P.
,
Ozcan
,
M.
,
Melilli
,
D.
, and
Valandro
,
L. F.
,
2010
, “
Effect of Cyclic Loading on Fracture Strength and Microleakage of a Quartz Fiber Dowel With Different Adhesive, Cement and Resin Core Material Combinations
,”
Minerva. Stomatol.
,
59
(
7–8
), pp.
407
414
.https://pubmed.ncbi.nlm.nih.gov/20842078/
16.
Boggan
,
R. S.
,
Strong
,
J. T.
,
Misch
,
C. E.
, and
Bidez
,
M. W.
,
1999
, “
Influence of Hex Geometry and Prosthetic Table Width on Static and Fatigue Strength of Dental Implants
,”
J. Prosthet. Dent.
,
82
(
4
), pp.
436
440
.10.1016/S0022-3913(99)70030-2
17.
Burhan
,
I.
, and
Kim
,
H. S.
,
2018
, “
S-N Curve Models for Composite Materials Characterisation: An Evaluative Review
,”
J. Compos. Sci.
,
2
(
3
), pp.
38
19
.10.3390/jcs2030038
18.
International Organization for Standardization
,
2016
, ISO 14801 “
Dentistry — Implants — Dynamic Loading Test for Endosseous Dental Implants
,” ISO, Geneva, Switzerland.https://www.iso.org/standard/61997.html
19.
Coray
,
R.
,
Zeltner
,
M.
, and
Özcan
,
M.
,
2016
, “
Fracture Strength of Implant Abutments After Fatigue Testing: A Systematic Review and a Meta-Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
333
346
.10.1016/j.jmbbm.2016.05.011
20.
Biswas
,
B. K.
,
Bag
,
S.
, and
Pal
,
S.
,
2013
, “
Biomechanical Analysis of Normal and Implanted Tooth Using Biting Force Measurement
,”
Int. J. Eng. Appl. Sci.
,
4
(
2
), pp.
17
23
.http://eaas-journal.org/survey/userfiles/files/v4i203%20Biomedical%20Engineering.pdf
You do not currently have access to this content.