The purpose of this study was to design and evaluate a system to test the mechanical behavior of pacemaker and defibrillator leads. Over 300,000 pacemaker and implantable cardioverter defibrillator (ICD) procedures are performed every year in the U.S. for the treatment of cardiac arrhythmias, ventricular dysrhythmias, and congestive heart failure. These procedures require implanting transvenous leads into the interior wall of the heart. A serious and sometimes fatal complication that may occur during or after lead implantation is perforation of the lead tip through the heart wall. The factors that lead to perforation are not fully understood. This illustrates that the mechanical interactions between the lead tip and the cardiac tissue need to be further investigated to improve the outcome for pacemaker and ICD patients. To improve the performance of lead tips, the testing protocols must reproduce physiological and clinically relevant tip-tissue interactions. As a first step toward this goal, testing parameters that influence those interactions must be identified. We investigated the effect of test system parameters, which reproduce potentially critical physiological constraints, on the load experienced at the distal tip of thirteen pacemaker and defibrillator active-fixation leads. We evaluated the use of a constraint to simulate the effect of the right ventricle (RV constraint) in vivo, how and where the lead was fixed in the test configuration, location of the load cell in the test system, rotation and frequency of the test protocol, and the effect of stylets. Results showed the RV constraint and load cell placement had the largest impact on lead tip load, while rotation of the test setup and test frequency had a minimal impact. Recommendations are made for a test system and protocol for in vitro testing of leads that take into consideration in vivo conditions. Better approximations of the in vivo environment may lead to improved product development. The potential of this system to more effectively evaluate new pacemaker and defibrillator lead designs will require further study.

References

1.
Hirschl
,
D. A.
,
Jain
,
V. R.
,
Spindola-Franco
,
H.
,
Gross
,
J. N.
, and
Haramati
,
L. B.
,
2007
, “
Prevalence and Characterization of Asymptomatic Pacemaker and ICD Lead Perforation on CT
,”
PACE
,
30
(
1
), pp.
28
32
.10.1111/j.1540-8159.2007.00575.x
2.
American Heart Association Statistics Committee and Stroke Statistics Committee
,
2013
, “
Heart Disease and Stroke Statistics—2013 Update: A Report From the American Heart Association
,”
Circulation
,
127
(
1
), pp.
e6
e245
.10.1161/CIR.0b013e31828124ad
3.
Mond
,
H. G.
, and
Proclemer
,
A.
,
2011
, “
The 11th World Survey of Cardiac Pacing and Implantable Cardioverter-Defibrillators: Calendar Year 2009—A World Society of Arrhythmia's Project
,”
PACE
,
34
(
8
), pp.
1013
1027
.10.1111/j.1540-8159.2011.03150.x
4.
Rajappan
,
K.
,
2009
, “
Permanent Pacemaker Implantation Technique: Part II
,”
Heart
,
95
(
4
), pp.
334
342
.10.1136/hrt.2008.156372
5.
Mahapatra
,
S.
,
Bybee
,
K. A.
,
Bunch
,
T. J.
,
Espinosa
,
R. E.
,
Sinak
,
L. J.
,
McGoon
,
M. D.
, and
Hayes
,
D. L.
,
2005
, “
Incidence and Predictors of Cardiac Perforation After Permanent Pacemaker Placement
,”
Heart Rhythm
,
2
(
9
), pp.
907
911
.10.1016/j.hrthm.2005.06.011
6.
Refaat
,
M. M.
,
Hashash
,
J. G.
, and
Shalaby
,
A. A.
,
2010
, “
Late Perforation by Cardiac Implantable Electronic Device Leads: Clinical Presentation, Diagnostic Clues, and Management
,”
Clin. Cardiol.
,
33
(
8
), pp.
466
475
.10.1002/clc.20803
7.
Sterlinski
,
M.
,
Przybylski
,
A.
,
Maciag
,
A.
,
Syska
,
P.
,
Pytkowski
,
M.
,
Lewandowski
,
M.
,
Kowalik
,
I.
,
Firek
,
B.
,
Kolsut
,
P.
,
Religa
,
G.
,
Kusmierczyk
,
M.
,
Walczak
,
F.
, and
Szwed
,
H.
,
2009
, “
Subacute Cardiac Perforations Associated With Active Fixation Leads
,”
Europace
,
11
(
2
), pp.
206
212
.10.1093/europace/eun363
8.
Turakhia
,
M.
,
Prasad
,
M.
,
Olgin
,
J.
,
Badhwar
,
N.
,
Tseng
,
Z. H.
,
Lee
,
R.
,
Marcus
,
G. M.
, and
Lee
,
B. K.
,
2009
, “
Rates and Severity of Perforation From Implantable Cardioverter-Defibrillator Leads: A 4-Year Study
,”
J. Interv. Card. Electrophysiol.
,
24
(
1
), pp.
47
52
.10.1007/s10840-008-9308-0
9.
Khan
,
M. N.
,
Joseph
,
G.
,
Khaykin
,
Y.
,
Ziada
,
K. M.
, and
Wilkoff
,
B. L.
,
2005
, “
Delayed Lead Perforation: A Disturbing Trend
,”
PACE
,
28
(
3
), pp.
251
253
.10.1111/j.1540-8159.2005.40003.x
10.
Danik
,
S. B.
,
Mansour
,
M.
,
Singh
,
J.
,
Reddy
,
V. Y.
,
Ellinor
,
P. T.
,
Milan
,
D.
,
Heist
,
E. K.
,
d'Avila
,
A.
,
Ruskin
,
J. N.
, and
Mela
,
T.
,
2007
, “
Increased Incidence of Subacute Lead Perforation Noted With One Implantable Cardioverter-Defibrillator
,”
Heart Rhythm
,
4
(
4
), pp.
439
442
.10.1016/j.hrthm.2006.12.044
11.
Ellis
,
C. R.
, and
Rothman
,
J. N.
,
2009
, “
Increased Rate of Subacute Lead Complications With Small-Caliber Implantable Cardioverter-Defibrillator Leads
,”
Heart Rhythm
,
6
(
5
), pp.
619
624
.10.1016/j.hrthm.2009.02.020
12.
Corbisiero
,
R.
, and
Armbruster
,
R.
,
2008
, “
Does Size Really Matter? A Comparison of the Riata Lead Family Based on Size and Its Relation to Performance
,”
PACE
,
31
(
6
), pp.
722
726
.10.1111/j.1540-8159.2008.01076.x
13.
Opolski
,
G.
,
Pieniak
,
M.
,
Steckiewicz
,
R.
, and
Kraska
,
T.
,
1983
, “
Flexibility of Permanent Intracardiac Electrode Leads. Achieving a Balance Between Perforation and Displacement
,”
7th World Symposium on Cardiac Pacing, Vienna
, Austria, May 1-5, pp. 423–426.
14.
Twardowski
,
Z. J.
, and
Seger
,
R. M.
,
2002
, “
Dimensions of Central Venous Structures in Humans Measured In Vivo Using Magnetic Resonance Imaging: Implications for Central-Vein Catheter Dimensions
,”
Int. J. Artif. Org.
,
25
(
2
), pp.
107
123
.
15.
Rudski
,
L. G.
,
Lai
,
W. W.
,
Afilalo
,
J.
,
Hua
,
L.
,
Handschumacher
,
M. D.
,
Chandrasekaran
,
K.
,
Solomon
,
S. D.
,
Louie
,
E. K.
, and
Schiller
,
N. B.
,
2010
, “
Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report From the American Society of Echocardiography
,”
J. Am. Soc. Echocardiography
,
23
(
7
), pp.
685
713
.10.1016/j.echo.2010.05.010
16.
Brown
,
S. B.
,
Raina
,
A.
,
Katz
,
D.
,
Szerlip
,
M.
,
Wiegers
,
S. E.
, and
Forfia
,
P. R.
,
2011
, “
Longitudinal Shortening Accounts for the Majority of Right Ventricular Contraction and Improves After Pulmonary Vasodilator Therapy in Normal Subjects and Patients With Pulmonary Arterial Hypertension
,”
Chest
,
140
(
1
), pp.
27
33
.10.1378/chest.10-1136
17.
Horton
,
K. D.
,
Meece
,
R. W.
, and
Hill
,
J. C.
,
2009
, “
Assessment of the Right Ventricle by Echocardiography: A Primer for Cardiac Sonographers
,”
J. Am. Soc. Echocardiography
,
22
(
7
), pp.
776
792
.10.1016/j.echo.2009.04.027
18.
Zeineh
,
N. S.
, and
Champion
,
H. C.
,
2010
, “
Utility of Tricuspid Annular Plane Systolic Excursion in the Assessment of Right Ventricular Function
,”
PVRI Rev.
,
2
(
1
), pp.
17
21
.10.4103/0974-6013.58625
19.
Gustafsson
,
U.
,
Lindqvist
,
P.
, and
Waldenstrom
,
A.
,
2008
, “
Apical Circumferential Motion of the Right and the Left Ventricles in Healthy Subjects Described With Speckle Tracking
,”
J. Am. Soc. Echocardiography
,
21
(
12
), pp.
1326
1330
.10.1016/j.echo.2008.09.014
You do not currently have access to this content.