A novel spine test machine was developed for physiological loading of spinal segments. It can be used in conjunction with external motion-capture systems (EMCS) to measure angular displacement, but can also measure in-plane rotations directly, though the inherent error is unknown. This study quantified error inherent in the displacement measurement of the machine. Synthetic specimens representative of cadaveric spinal specimens were tested. Machine displacement was compared to EMCS displacement. The maximum machine displacement error was <2 deg for lumbar and thoracic specimens. The authors suggest that researchers use EMCS in conjunction with the test machine when high accuracy measurements are required.
Issue Section:
Research Papers
References
1.
Panjabi
, M. M.
, Krag
, M. H.
, and Goel
, V. K.
, 1981
, “A Technique for Measurement and Description of Three-Dimensional Six Degree-of-Freedom Motion of a Body Joint With an Application to the Human Spine
,” J. Biomech.
, 14
(7
), pp. 447
–460
.10.1016/0021-9290(81)90095-62.
Panjabi
, M. M.
, Hausfeld
, J. N.
, and White
, III, A. A.
, 1981
, “A Biomechanical Study of the Ligamentous Stability of the Thoracic Spine in Man
,” Acta Orthop. Scand.
, 52
(3
), pp. 315
–326
.10.3109/174536781090501093.
Wilke
, H. J.
, Wenger
, K.
, and Claes
, L.
, 1998
, “Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,” Eur. Spine J.
, 7
(2
), pp. 148
–154
.10.1007/s0058600500454.
Goertzen
, D. J.
, Lane
, C.
, and Oxland
, T. R.
, 2004
, “Neutral Zone and Range of Motion in the Spine are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An In Vitro Porcine Investigation
,” J. Biomech.
, 37
(2
), pp. 257
–261
.10.1016/S0021-9290(03)00307-55.
Sangiorgio
, S. N.
, Borkowski
, S. L.
, Bowen
, R. E.
, Scaduto
, A. A.
, Frost
, N. L.
, and Ebramzadeh
, E.
, 2013
, “Quantification of Increase in Three-Dimensional Spine Flexibility Following Sequential Ponte Osteotomies in a Cadaveric Model
,” Spine Deformity
, 1
(3
), pp. 171
–178
.10.1016/j.jspd.2013.01.0066.
Kelly
, B. P.
, and Bennett
, C. R.
, 2013
, “Design and Validation of a Novel Cartesian Biomechanical Testing System With Coordinated 6DOF Real-Time Load Control: Application to the Lumbar Spine (L1-S, L4-L5)
,” J. Biomech.
, 46
(11
), pp. 1948
–1954
.10.1016/j.jbiomech.2013.05.0087.
Goel
, V. K.
, Clark
, C. R.
, McGowan
, D.
, and Goyal
, S.
, 1984
, “An In-Vitro Study of the Kinematics of the Normal, Injured and Stabilized Cervical Spine
,” J. Biomech.
, 17
(5
), pp. 363
–376
.10.1016/0021-9290(84)90030-78.
Wilke
, H. J.
, Drumm
, J.
, Haussler
, K.
, Mack
, C.
, Steudel
, W. I.
, and Kettler
, A.
, 2008
, “Biomechanical Effect of Different Lumbar Interspinous Implants on Flexibility and Intradiscal Pressure
,” Eur. Spine J.
, 17
(8
), pp. 1049
–1056
.10.1007/s00586-008-0657-29.
Ilharreborde
, B.
, Zhao
, K.
, Boumediene
, E.
, Gay
, R.
, Berglund
, L.
, and An
, K. N.
, 2010
, “A Dynamic Method for In Vitro Multisegment Spine Testing
,” Orthop. Traumatol., Surg. Res.
, 96
(4
), pp. 456
–461
.10.1016/j.otsr.2010.01.00610.
Carroll
, N. L.
, Cartwright
, E. C.
, Gephardt
, R. J.
, Dixon
, C. L.
, Goel
, V. K.
, and Friis
, E. A.
, 2013
, “Simplified Spine Testing Device
,” U.S. Patent Publication No. WO2013020125 A1.11.
Myers
, B. S.
, McElhaney
, J. H.
, and Doherty
, B. J.
, 1991
, “The Viscoelastic Responses of the Human Cervical Spine in Torsion: Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,” J. Biomech.
, 24
(9
), pp. 811
–817
.10.1016/0021-9290(91)90306-812.
Brodke
, D. S.
, Gollogly
, S.
, Alexander Mohr
, R.
, Nguyen
, B. K.
, Dailey
, A. T.
, and Bachus
, A. K.
, 2001
, “Dynamic Cervical Plates: Biomechanical Evaluation of Load Sharing and Stiffness
,” Spine
, 26
(12
), pp. 1324
–1329
.10.1097/00007632-200106150-0001013.
Panjabi
, M. M.
, Goel
, V. K.
, and Takata
, K.
, 1982
, “Physiologic Strains in the Lumbar Spinal Ligaments. An In Vitro Biomechanical Study
,” Spine
, 7
(3
), pp. 192
–203
.10.1097/00007632-198205000-0000314.
Panjabi
, M. M.
, Brand
, Jr, R. A.
, and White
, III, A. A.
, 1976
, “Three-Dimensional Flexibility and Stiffness Properties of the Human Thoracic Spine
,” J. Biomech.
, 9
(4
), pp. 185
–192
.10.1016/0021-9290(76)90003-815.
Panjabi
, M. M.
, Brand
, Jr, R. A.
, and White
, III, A. A.
, 1976
, “Mechanical Properties of the Human Thoracic Spine as Shown by Three-Dimensional Load-Displacement Curves
,” J. Bone Jt. Surg. Am. Vol.
, 58
(5
), pp. 642
–652
.16.
Nibu
, K.
, Panjabi
, M. M.
, Oxland
, T.
, and Cholewicki
, J.
, 1997
, “Multidirectional Stabilizing Potential of BAK Interbody Spinal Fusion System for Anterior Surgery
,” J. Spinal Disord.
, 10
(4
), pp. 357
–362
.10.1097/00002517-199708000-0001217.
Guan
, Y.
, Yoganandan
, N.
, Moore
, J.
, Pintar
, F. A.
, Zhang
, J.
, Maiman
, D. J.
, and Laud
, P.
, 2007
, “Moment–Rotation Responses of the Human Lumbosacral Spinal Column
,” J. Biomech.
, 40
(9
), pp. 1975
–1980
.10.1016/j.jbiomech.2006.09.02718.
Crawford
, N. R.
, Peles
, J. D.
, and Dickman
, C. A.
, 1998
, “The Spinal Lax Zone and Neutral Zone: Measurement Techniques and Parameter Comparisons
,” J. Spinal Disord.
, 11
(5
), pp. 416
–429
.10.1097/00002517-199810000-0000919.
Hitchon
, P. W.
, Brenton
, M. D.
, Serhan
, H.
, Goel
, V. K.
, and Torner
, J. C.
, 2002
, “In Vitro Biomechanical Studies of an Anterior Thoracolumbar Implant
,” J. Spinal Disord. Tech.
, 15
(5
), pp. 350
–354
.10.1097/00024720-200210000-0000220.
Ogon
, M.
, Bender
, B. R.
, Hooper
, D. M.
, Spratt
, K. F.
, Goel
, V. K.
, Wilder
, D. G.
, and Pope
, M. H.
, 1997
, “A Dynamic Approach to Spinal Instability. Part I: Sensitization of Intersegmental Motion Profiles to Motion Direction and Load Condition by Instability
,” Spine
, 22
(24
), pp. 2841
–2858
.10.1097/00007632-199712150-0000721.
Wilke
, H. J.
, Jungkunz
, B.
, Wenger
, K.
, and Claes
, L. E.
, 1998
, “Spinal Segment Range of Motion as a Function of In Vitro Test Conditions: Effects of Exposure Period, Accumulated Cycles, Angular-Deformation Rate, and Moisture Condition
,” Anat. Record
, 251
(1
), pp. 15
–19
.10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D22.
Friis
, E. A.
, Pence
, C. D.
, Graber
, C. D.
, and Montoya
, J. A.
, 2002
, “Mechanical Analogue Model of the Human Lumbar Spine: Development and Initial Evaluation
,” Spinal Implants: Are We Evaluating Them Appropriately?
(ASTM STP 1431), M. N.
Melkerson
, S. L.
Griffith
, and J. S.
Kirkpatrick
, eds., ASTM International
, West Conshohocken, PA.
23.
Domann
, J.
, Mar
, D.
, Johnson
, A.
, James
, J.
, and Friis
, E. A.
, 2011
, “The Analogue Spine Model: The First Anatomically and Mechanically Correct Synthetic Physical Model of the Lumbar Spine
,” The Spine J.
, 11
(10), pp. S155
–S156
.10.1016/j.spinee.2011.08.37324.
McLain
, R. F.
, Yerby
, S. A.
, and Moseley
, T. A.
, 2002
, “Comparative Morphometry of L4 Vertebrae: Comparison of Large Animal Models for the Human Lumbar Spine
,” Spine
, 27
(8
), pp. E200
–E206
.10.1097/00007632-200204150-0000525.
Shea
, M.
, Edwards
, W. T.
, White
, A. A.
, and Hayes
, W. C.
, 1991
, “Variations of Stiffness and Strength Along the Human Cervical Spine
,” J. Biomech.
, 24
(2
), pp. 95
–107
.10.1016/0021-9290(91)90354-P26.
Goel
, V. K.
, Wilder
, D. G.
, Pope
, M. H.
, and Edwards
, W. T.
, 1995
, “Biomechanical Testing of the Spine. Load-Controlled Versus Displacement-Controlled Analysis
,” Spine
, 20
(21
), pp. 2354
–2357
.10.1097/00007632-199511000-0001727.
Patwardhan
, A. G.
, Havey
, R. M.
, Carandang
, G.
, Simonds
, J.
, Voronov
, L. I.
, Ghanayem
, A. J.
, Meade
, K. P.
, Gavin
, T. M.
, and Paxinos
, O.
, 2003
, “Effect of Compressive Follower Preload on the Flexion-Extension Response of the Human Lumbar Spine
,” J. Orthop. Res.
, 21
(3
), pp. 540
–546
.10.1016/S0736-0266(02)00202-428.
Fielding
, L. C.
, Alamin
, T. F.
, Voronov
, L. I.
, Carandang
, G.
, Havey
, R. M.
, and Patwardhan
, A. G.
, 2013
, “Parametric and Cadaveric Models of Lumbar Flexion Instability and Flexion Restricting Dynamic Stabilization System
,” Eur. Spine J.
, 22
(12
), pp. 2710
–2718
.10.1007/s00586-013-2934-y29.
Patwardhan
, A. G.
, Havey
, R. M.
, Ghanayem
, A. J.
, Diener
, H.
, Meade
, K. P.
, Dunlap
, B.
, and Hodges
, S. D.
, 2000
, “Load-Carrying Capacity of the Human Cervical Spine in Compression is Increased Under a Follower Load
,” Spine
, 25
(12
), pp. 1548
–1554
.10.1097/00007632-200006150-0001530.
Fry
, R. W.
, Alamin
, T. F.
, Voronov
, L. I.
, Fielding
, L. C.
, Ghanayem
, A. J.
, Parikh
, A.
, Carandang
, G.
, McIntosh
, B. W.
, Havey
, R. M.
, and Patwardhan
, A. G.
, 2014
, “Compressive Preload Reduces Segmental Flexion Instability After Progressive Destabilization of the Lumbar Spine
,” Spine
, 39
(2
), pp. E74
–E81
.10.1097/BRS.000000000000009331.
Patwardhan
, A. G.
, Havey
, R. M.
, Meade
, K. P.
, Lee
, B.
, and Dunlap
, B.
, 1999
, “A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,” Spine
, 24
(10
), pp. 1003
–1009
.10.1097/00007632-199905150-0001432.
Goel
, V. K.
, Panjabi
, M. M.
, Patwardhan
, A. G.
, Dooris
, A. P.
, and Serhan
, H.
, 2006
, “Test Protocols for Evaluation of Spinal Implants
,” J. Bone Jt. Surg. Am. Vol.
, 88
(Suppl 2
), pp. 103
–109
.10.2106/JBJS.E.01363Copyright © 2015 by ASME
You do not currently have access to this content.