The aim of this study was to analyze five factors that are responsible for the ablation volume and maximum temperature during the procedure of irreversible electroporation (IRE). The five factors used in this study were the pulse strength (U), the electrode diameter (B), the distance between the electrode and the center (D), the electrode length (L), and the number of electrodes (N). A validated finite element model (FEM) of IRE was built to collect the data of the ablation volume and maximum temperature generated in a liver tissue. Twenty-five experiments were performed, in which the ablation volume and maximum temperature were taken as response variables. The five factors with ranges were analyzed to investigate their impacts on the ablation volume and maximum temperature, respectively, using analysis of variance. Response surface method (RSM) was used to optimize the five factors for the maximum ablation volume without thermal damage (the maximum temperature 50 °C for 90 s). U and L were found with significant impacts on the ablation volume (P < 0.001, and P = 0.009, respectively) while the same conclusion was not found for B, D and N (P = 0.886, P = 0.075 and P = 0.279, respectively). Furthermore, U, D, and N had the significant impacts on the maximum temperature with P < 0.001, P < 0.001, and P = 0.003, respectively, while same conclusion was not found for B and L (P = 0.720 and P = 0.051, respectively). The maximum ablation volume of 2952.9960 mm3 without thermal damage can be obtained by using the following set of factors: U = 2362.2384 V, B = 1.4889 mm, D = 7 mm, L = 4.5659 mm, and N = 3. The study concludes that both B and N have insignificant impacts (P = 0.886, and P = 0.279, respectively) on the ablation volume; U has the most significant impact (P < 0.001) on the ablation volume; electrode configuration and pulse strength in IRE can be optimized for the maximum ablation volume without thermal damage using RSM.

References

1.
Chen
,
C.
,
Smye
,
S. W.
,
Robinson
,
M. P.
, and
Evans
,
J. A.
,
2006
, “
Membrane Electroporation Theories: A Review
,”
Med. Biol. Eng. Comput.
,
44
(
1–2
), pp.
5
14
.
2.
Weaver
,
J.
, and
Chizmadzhev
,
Y.
, 1996, “
Electroporation
,”
CRC Handbook of Biological Effects of Electromagnetic Fields
, Vol. 2, CRC Press, Boca Raton, FL, pp. 247–274.
3.
Weaver
,
J. C.
,
2000
, “
Electroporation of Cells and Tissues
,”
IEEE Trans. Plasma Sci.
,
28
(
1
), pp.
24
33
.
4.
Rubinsky
,
B.
,
2007
, “
Irreversible Electroporation in Medicine
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
255
259
.
5.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
, Jr.,
Neal
,
R. E.
, II
,
Ellis
,
T. L.
,
Olson
,
J. D.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2010
, “
Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis
,”
J. Membr. Biol.
,
236
(
1
), pp.
127
136
.,
6.
Rubinsky
,
B.
,
Onik
,
G.
, and
Mikus
,
P.
,
2007
, “
Irreversible Electroporation: A New Ablation Modality—Clinical Implications
,”
Technol. Cancer Res. Treat.
,
6
(
1
), pp.
37
48
.
7.
Deodhar
,
A.
,
Dickfeld
,
T.
,
Single
,
G. W.
,
Hamilton
,
W. C.
, Jr.,
Thornton
,
R. H.
, and
Sofocleous
,
C. T.
,
2011
, “
Irreversible Electroporation Near the Heart: Ventricular Arrhythmias Can Be Prevented With ECG Synchronization
,”
AJR Am. J. Roentgenol.
,
196
(
3
), pp.
W330
W335
.
8.
Marty
,
M.
,
Sersa
,
G.
,
Garbay
,
J. R.
,
Gehl
,
J.
,
Collins
,
C. G.
,
Snoj
,
M.
, and
Pavlovic
,
I.
,
2006
, “
Electrochemotherapy—An Easy, Highly Effective and Safe Treatment of Cutaneous and Subcutaneous Metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) Study
,”
EJC Suppl.
,
4
(
11
), pp.
3
13
.
9.
Davalos
,
R. V.
,
Mir
,
L. M.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.
10.
Jiang
,
C.
,
Davalos
,
R. V.
, and
Bischof
,
J. C.
,
2015
, “
A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy
,”
IEEE Trans. Biomed. Eng.
,
62
(
1
), pp.
4
20
.
11.
Zhang
,
B.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Luo
,
Y.
,
Liu
,
C.
, and
Zhang
,
W.
, 2016, “
A Review of Radiofrequency Ablation: Large Target Tissue Necrosis and Mathematical Modelling
,”
Physica Medica
,
32
(8), pp. 961–971.
12.
Simon
,
C. J.
,
Dupuy
,
D. E.
, and
Mayo-Smith
,
W. W.
,
2005
, “
Microwave Ablation: Principles and Applications
,”
Radiographics
,
25
(
Suppl. 1
), pp.
S69
S83
.
13.
Singal
,
A.
,
Ballard
,
J. R.
,
Rudie
,
E. N.
,
Cressman
,
E. N.
, and
Iaizzo
,
P. A.
,
2016
, “
A Review of Therapeutic Ablation Modalities
,”
ASME J. Med. Devices
,
10
(
4
), p.
040801
.
14.
Cheung
,
W.
,
Kavnoudias
,
H.
,
Roberts
,
S.
,
Szkandera
,
B.
,
Kemp
,
W.
, and
Thomson
,
K. R.
,
2013
, “
Irreversible Electroporation for Unresectable Hepatocellular Carcinoma: Initial Experience and Review of Safety and Outcomes
,”
Technol. Cancer Res. Treat.
,
12
(
3
), pp.
233
241
.
15.
Cannon
,
R.
,
Ellis
,
S.
,
Hayes
,
D.
,
Narayanan
,
G.
, and
Martin
,
R. C.
,
2013
, “
Safety and Early Efficacy of Irreversible Electroporation for Hepatic Tumors in Proximity to Vital Structures
,”
J. Surg. Oncol.
,
107
(
5
), pp.
544
549
.
16.
Sano
,
M. B.
,
Fan
,
R. E.
,
Hwang
,
G. L.
,
Sonn
,
G. A.
, and
Xing
,
L.
,
2016
, “
Production of Spherical Ablations Using Nonthermal Irreversible Electroporation: A Laboratory Investigation Using a Single Electrode and Grounding Pad
,”
J. Vasc. Interventional Radiol.
,
27
(
9
), pp.
1432
1440
.
17.
Jiang
,
C.
,
Qin
,
Z.
, and
Bischof
,
J.
,
2014
, “
Membrane-Targeting Approaches for Enhanced Cancer Cell Destruction With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
193
204
.
18.
Jiang
,
C.
,
Shao
,
Q.
, and
Bischof
,
J.
,
2015
, “
Pulse Timing During Irreversible Electroporation Achieves Enhanced Destruction in a Hindlimb Model of Cancer
,”
Ann. Biomed. Eng.
,
43
(
4
), pp.
887
895
.
19.
Zhang
,
B.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Xiang
,
J.
, and
Zhang
,
W.
,
2017
, “
An In Vivo Experimental Study of the Pulse Delivery Method in Irreversible Electroporation
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
014501
.
20.
Ben-David
,
E.
,
Appelbaum
,
L.
,
Sosna
,
J.
,
Nissenbaum
,
I.
, and
Goldberg
,
S. N.
,
2012
, “
Characterization of Irreversible Electroporation Ablation in In Vivo Porcine Liver
,”
AJR Am. J. Roentgenol.
,
198
(
1
), pp.
W62
W68
.
21.
Appelbaum
,
L.
,
Ben-David
,
E.
,
Faroja
,
M.
,
Nissenbaum
,
Y.
,
Sosna
,
J.
, and
Goldberg
,
S. N.
,
2014
, “
Irreversible Electroporation Ablation: Creation of Large-Volume Ablation Zones in In Vivo Porcine Liver With Four-Electrode Arrays
,”
Radiology
,
270
(
2
), pp.
416
424
.
22.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2011
, “
A Parametric Study Delineating Irreversible Electroporation From Thermal Damage Based on a Minimally Invasive Intracranial Procedure
,”
Biomed. Eng. Online
,
10
(
1
), p.
34
.
23.
Garcia
,
P. A.
,
Davalos
,
R. V.
, and
Miklavcic
,
D.
,
2014
, “
A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue
,”
PloS One
,
9
(
8
), p.
e103083
.
24.
Sel
,
D.
,
Cukjati
,
D.
,
Batiuskaite
,
D.
,
Slivnik
,
T.
,
Mir
,
L. M.
, and
Miklavcic
,
D.
,
2005
, “
Sequential Finite Element Model of Tissue Electropermeabilization
,”
IEEE Trans. Biomed. Eng.
,
52
(
5
), pp.
816
827
.
25.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.
26.
Diller
,
K. R.
,
1992
, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Adv. Heat Transfer
,
22
, pp.
157
357
.
27.
Ahmed
,
M.
,
Brace
,
C. L.
,
Lee
,
F. T.
, Jr.
, and
Goldberg
,
S. N.
,
2011
, “
Principles of and Advances in Percutaneous Ablation
,”
Radiology
,
258
(
2
), pp.
351
369
.
28.
Goldberg
,
S. N.
,
Gazelle
,
G. S.
,
Halpern
,
E. F.
,
Rittman
,
W. J.
,
Mueller
,
P. R.
, and
Rosenthal
,
D. I.
,
1996
, “
Radiofrequency Tissue Ablation: Importance of Local Temperature Along the Electrode Tip Exposure in Determining Lesion Shape and Size
,”
Acad. Radiol.
,
3
(
3
), pp.
212
218
.
29.
Latouche
,
E. L.
,
Davalos
,
R. V.
, and
Martin
,
R. C. G.
,
2015
, “
Modeling of Irreversible Electroporation Treatments for the Optimization of Pancreatic Cancer Therapies
,”
Sixth European Conference of the International Federation for Medical and Biological Engineering
(
IFMBE
), Dubrovnik, Croatia, Sept. 7–11, pp.
801
804
.
30.
Arena
,
C. B.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Caldwell
,
J. L.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2011
, “
High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction
,”
Biomed. Eng. Online
,
10
(
1
), p.
102
.
31.
Faroja
,
M.
,
Ahmed
,
M.
,
Appelbaum
,
L.
,
Nissenbaum
,
I.
,
Ben-David
,
E.
,
Moussa
,
M.
,
Sosna
,
J.
, and
Goldberg
,
S. N.
,
2013
, “
Irreversible Electroporation Ablation: Is All the Damage Nonthermal?
,”
Radiology
,
266
(
2
), pp.
462
470
.
32.
Shaligram
,
N. S.
,
Singh
,
S. K.
,
Singhal
,
R. S.
,
Szakacs
,
G.
, and
Pandey
,
A.
,
2008
, “
Compactin Production in Solid-State Fermentation Using Orthogonal Array Method by P. Brevicompactum
,”
Biochem. Eng. J.
,
41
(
3
), pp.
295
300
.
33.
Subasi
,
A.
,
Sahin
,
B.
, and
Kaymaz
,
I.
,
2016
, “
Multi-Objective Optimization of a Honeycomb Heat Sink Using Response Surface Method
,”
Int. J. Heat Mass Transfer
,
101
, pp.
295
302
.
You do not currently have access to this content.