Abstract

Magnetic nanoparticle hyperthermia (MNH) is a localized cancer treatment that uses an alternating magnetic field to excite magnetic nanoparticles (MNPs) injected into a tumor, causing them to generate heat. Once the temperature of the tumor tissue reaches about 43 °C, the cancerous cells die. Different types of MNPs have been studied, including iron oxides with various coatings, Cu-Ni alloys, and complex manganese/zinc particles. This paper reviews different types of MNPs and assesses them by magnetization, specific absorption rate (SAR), and Curie temperature. We reviewed the achievements and limitations of the works in this field. A major issue with MNH is maintaining effective hyperthermia while preserving healthy tissue. Numerical modeling can predict temperature distribution and safely simulate hyperthermia. The most used bioheat transfer equation is Pennes' equation which includes a term for blood perfusion, an important factor for temperature distribution. While some models safely neglect it, most include the blood perfusion term. Some recent models have also included large blood vessels, others used their own heat transfer models. This article reviews the different models and classifies them based on how they address blood flow. A need for studies with realistic tumor shapes was identified. The irregular shape of most tumors could result in less uniform temperature distribution than in the commonly used circular or spherical models. This article aims to identify potential future work to create more realistic tumor models.

References

1.
Mallory
,
M.
,
Gogineni
,
E.
,
Jones
,
G. C.
,
Greer
,
L.
, and
Simone
,
C. B.
,
2016
, “
Therapeutic Hyperthermia: The Old, the New, and the Upcoming
,”
Crit. Rev. Oncol./Hematol.
,
97
, pp.
56
64
.10.1016/j.critrevonc.2015.08.003
2.
Society for Thermal Medicine, 2020,
What is Thermal Medicine?
,” The Society for Thermal Medicine, Online, accessed June 10, 2021, https://www.thermaltherapy.org/ebusSFTM/SOCIETYINFO/WhatisThermalMedicine.aspx
3.
Jha
,
S.
,
Sharma
,
P. K.
, and
Malviya
,
R.
,
2016
, “
Hyperthermia: Role and Risk Factor for Cancer Treatment
,”
Achieve. Life Sci.
,
10
(
2
), pp.
161
167
.10.1016/j.als.2016.11.004
4.
Behrouzkia
,
Z.
,
Joveini
,
Z.
,
Keshavarzi
,
B.
,
Eyvazzadeh
,
N.
, and
Aghdam
,
R. Z.
,
2016
, “
Hyperthermia: How Can It Be Used?
,”
Oman Med. J.
,
31
(
2
), pp.
89
97
.10.5001/omj.2016.19
5.
Paulides
,
M. M.
,
Dobsicek Trefna
,
H.
,
Curto
,
S.
, and
Rodrigues
,
D. B.
,
2020
, “
Recent Technological Advancements in Radiofrequency- And Microwave-Mediated Hyperthermia for Enhancing Drug Delivery
,”
Adv. Drug Deliv. Rev.
,
163–164
, pp.
3
18
.10.1016/j.addr.2020.03.004
6.
Sulyok
,
I.
,
Fleischmann
,
E.
,
Stift
,
A.
,
Roth
,
G.
,
Lebherz-Eichinger
,
D.
,
Kasper
,
D.
,
Spittler
,
A.
, and
Kimberger
,
O.
,
2012
, “
Effect of Preoperative Fever-Range Whole-Body Hyperthermia on Immunological Markers in Patients Undergoing Colorectal Cancer Surgery
,”
Brit. J. Anaesth.
,
109
(
5
), pp.
754
761
.10.1093/bja/aes248
7.
Lima-Tenório
,
M. K.
,
Pineda
,
E. A. G.
,
Ahmad
,
N. M.
,
Fessi
,
H.
, and
Elaissari
,
A.
,
2015
, “
Magnetic Nanoparticles: In Vivo Cancer Diagnosis and Therapy
,”
Int. J. Pharm.
,
493
(
1–2
), pp.
313
327
.10.1016/j.ijpharm.2015.07.059
8.
Vollath
,
D.
,
Szabó
,
D. V.
, and
Hauβelt
,
J.
,
1997
, “
Synthesis and Properties of Ceramic Nanoparticles and Nanocomposites
,”
J. Eur. Ceram. Soc.
,
17
(
11
), pp.
1317
1324
.10.1016/S0955-2219(96)00224-5
9.
Grasset
,
F.
,
Mornet
,
S.
,
Demourgues
,
A.
,
Portier
,
J.
,
Bonnet
,
J.
,
Vekris
,
A.
, and
Duguet
,
E.
,
2001
, “
Synthesis, Magnetic Properties, Surface Modification and Cytotoxicity Evaluation of Y3Fe5−xAlxO12 (0⩽x⩽2) Garnet Submicron Particles for Biomedical Applications
,”
J. Magn. Magn. Mater.
,
234
(
3
), pp.
409
418
.10.1016/S0304-8853(01)00386-9
10.
Ma
,
M.
,
Zhang
,
Y.
,
Yu
,
W.
,
Shen
,
H.-y.
,
Zhang
,
H.-Q.
, and
Gu
,
N.
,
2003
, “
Preparation and Characterization of Magnetite Nanoparticles Coated by Amino Silane
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
212
(
2–3
), pp.
219
226
.10.1016/S0927-7757(02)00305-9
11.
Chatterjee
,
J.
,
Bettge
,
M.
,
Haik
,
Y.
, and
Jen Chen
,
C.
,
2005
, “
Synthesis and Characterization of Polymer Encapsulated Cu–Ni Magnetic Nanoparticles for Hyperthermia Applications
,”
J. Magn. Magn. Mater.
,
293
(
1
), pp.
303
309
.10.1016/j.jmmm.2005.02.024
12.
Brusentsova
,
T. N.
,
Brusentsov
,
N. A.
,
Kuznetsov
,
V. D.
, and
Nikiforov
,
V. N.
,
2005
, “
Synthesis and Investigation of Magnetic Properties of Gd-Substituted Mn–Zn Ferrite Nanoparticles as a Potential low-TC Agent for Magnetic Fluid Hyperthermia
,”
J. Magn. Magn. Mater.
,
293
(
1
), pp.
298
302
.10.1016/j.jmmm.2005.02.023
13.
Pollert
,
E.
,
Knížek
,
K.
,
Maryško
,
M.
,
Kašpar
,
P.
,
Vasseur
,
S.
, and
Duguet
,
E.
,
2007
, “
New Tc-Tuned Magnetic Nanoparticles for Self-Controlled Hyperthermia
,”
J. Magn. Magn. Mater.
,
316
(
2
), pp.
122
125
.10.1016/j.jmmm.2007.02.031
14.
Lee
,
S. W.
,
Bae
,
S.
,
Takemura
,
Y.
,
Shim
,
I.-B.
,
Kim
,
T. M.
,
Kim
,
J.
,
Lee
,
H. J.
,
Zurn
,
S.
, and
Kim
,
C. S.
,
2007
, “
Self-Heating Characteristics of Cobalt Ferrite Nanoparticles for Hyperthermia Application
,”
J. Magn. Magn. Mater.
,
310
(
2
), pp.
2868
2870
.10.1016/j.jmmm.2006.11.080
15.
Kuznetsov
,
A. A.
,
Leontiev
,
V. G.
,
Brukvin
,
V. A.
,
Vorozhtsov
,
G. N.
,
Kogan
,
B. Y.
,
Shlyakhtin
,
O. A.
,
Yunin
,
A. M.
,
Tsybin
,
O. I.
, and
Kuznetsov
,
O. A.
,
2007
, “
Local Radiofrequency-Induced Hyperthermia Using CuNi Nanoparticles With Therapeutically Suitable Curie Temperature
,”
J. Magn. Magn. Mater.
,
311
(
1
), pp.
197
203
.10.1016/j.jmmm.2006.11.199
16.
Chalkidou
,
A.
,
Simeonidis
,
K.
,
Angelakeris
,
M.
,
Samaras
,
T.
,
Martinez-Boubeta
,
C.
,
Balcells
,
L.
,
Papazisis
,
K.
,
Dendrinou-Samara
,
C.
, and
Kalogirou
,
O.
,
2011
, “
In Vitro Application of Fe/MgO Nanoparticles as Magnetically Mediated Hyperthermia Agents for Cancer Treatment
,”
J. Magn. Magn. Mater.
,
323
(
6
), pp.
775
780
.10.1016/j.jmmm.2010.10.043
17.
Sadhasivam
,
S.
,
Savitha
,
S.
,
Wu
,
C.-J.
,
Lin
,
F.-H.
, and
Stobiński
,
L.
,
2015
, “
Carbon Encapsulated Iron Oxide Nanoparticles Surface Engineered With Polyethylene Glycol-Folic Acid to Induce Selective Hyperthermia in Folate Over Expressed Cancer Cells
,”
Int. J. Pharm.
,
480
(
1–2
), pp.
8
14
.10.1016/j.ijpharm.2015.01.029
18.
Stoia
,
M.
,
Muntean
,
E.
,
Păcurariu
,
C.
, and
Mihali
,
C.
,
2017
, “
Thermal Behavior of MnFe2O4 and MnFe2O4/C Nanocomposite Synthesized by a Solvothermal Method
,”
Thermochim. Acta
,
652
, pp.
1
8
.10.1016/j.tca.2017.03.009
19.
Jadhav
,
S. V.
,
Shewale
,
P. S.
,
Shin
,
B. C.
,
Patil
,
M. P.
,
Kim
,
G. D.
,
Rokade
,
A. A.
,
Park
,
S. S.
,
Bohara
,
R. A.
, and
Yu
,
Y. S.
,
2019
, “
Study of Structural and Magnetic Properties and Heat Induction of Gadolinium-Substituted Manganese Zinc Ferrite Nanoparticles for In Vitro Magnetic Fluid Hyperthermia
,”
J. Colloid Interface Sci.
,
541
, pp.
192
203
.10.1016/j.jcis.2019.01.063
20.
Zhang
,
W.
,
Yu
,
X.
,
Li
,
H.
,
Dong
,
D.
,
Zuo
,
X.
, and
Wu
,
C.-W.
,
2019
, “
Magnetic Nanoparticles With Low Curie Temperature and High Heating Efficiency for Self-Regulating Temperature Hyperthermia
,”
J. Magn. Magn. Mater.
,
489
, p.
165382
.10.1016/j.jmmm.2019.165382
21.
Yu
,
X.
,
Wang
,
L.
,
Li
,
K.
,
Mi
,
Y.
,
Li
,
Z.
,
Wu
,
D.
,
'a
,
Sun
,
F.
,
He
,
S.
, and
Zeng
,
H.
,
2021
, “
Tuning Dipolar Effects on Magnetic Hyperthermia of Zn0.3Fe2.7O4/SiO2 Nanoparticles by Silica Shell
,”
J. Magn. Magn. Mater.
,
521
, p.
167483
.10.1016/j.jmmm.2020.167483
22.
Hsu
,
S. P. C.
,
Dhawan
,
U.
,
Tseng
,
Y.-Y.
,
Lin
,
C.-P.
,
Kuo
,
C.-Y.
,
Wang
,
L.-F.
, and
Chung
,
R.-J.
,
2020
, “
Glioma-Sensitive Delivery of Angiopep-2 Conjugated Iron Gold Alloy Nanoparticles Ensuring Simultaneous Tumor Imaging and Hyperthermia Mediated Cancer Theranostics
,”
Appl. Mater. Today
,
18
, p.
100510
.10.1016/j.apmt.2019.100510
23.
Xing
,
M.
,
Mohapatra
,
J.
,
Beatty
,
J.
,
Elkins
,
J.
,
Pandey
,
N. K.
,
Chalise
,
A.
,
Chen
,
W.
,
Jin
,
M.
, and
Liu
,
J. P.
,
2021
, “
Iron-Based Magnetic Nanoparticles for Multimodal Hyperthermia Heating
,”
J. Alloys Compd.
,
871
(
22
), p.
159475
.10.1016/j.jallcom.2021.159475
24.
Tatarchuk
,
T.
,
Shyichuk
,
A.
,
Sojka
,
Z.
,
Gryboś
,
J.
,
Naushad
,
M.
,
Kotsyubynsky
,
V.
,
Kowalska
,
M.
,
Kwiatkowska-Marks
,
S.
, and
Danyliuk
,
N.
,
2021
, “
Green Synthesis, Structure, Cations Distribution and Bonding Characteristics of Superparamagnetic Cobalt-Zinc Ferrites Nanoparticles for Pb(II) Adsorption and Magnetic Hyperthermia Applications
,”
J. Mol. Liq.
,
328
(
1A
), p.
115375
.10.1016/j.molliq.2021.115375
25.
Nguyen
,
M. P.
,
Nguyen
,
M. H.
,
Kim
,
J.
, and
Kim
,
D.
,
2020
, “
Encapsulation of Superparamagnetic Iron Oxide Nanoparticles With Polyaspartamide Biopolymer for Hyperthermia Therapy
,”
Eur. Polym. J.
,
122
, p.
109396
.10.1016/j.eurpolymj.2019.109396
26.
Hammad
,
M.
,
Hardt
,
S.
,
Mues
,
B.
,
Salamon
,
S.
,
Landers
,
J.
,
Slabu
,
I.
,
Wende
,
H.
,
Schulz
,
C.
, and
Wiggers
,
H.
,
2020
, “
Gas-Phase Synthesis of Iron Oxide Nanoparticles for Improved Magnetic Hyperthermia Performance
,”
J. Alloys Compd.
,
824
, p.
153814
.10.1016/j.jallcom.2020.153814
27.
Tang
,
Y.
,
Jin
,
T.
,
Flesch
,
R. C. C.
,
Gao
,
Y.
, and
He
,
M.
,
2021
, “
Effect of Nanofluid Distribution on Therapeutic Effect Considering Transient Bio-Tissue Temperature During Magnetic Hyperthermia
,”
J. Magn. Magn. Mater.
,
517
, p.
167391
.10.1016/j.jmmm.2020.167391
28.
Rousseau
,
A.
,
Tellier
,
M.
,
Marin
,
L.
,
Garrow
,
M.
,
Madelaine
,
C.
,
Hallali
,
N.
, and
Carrey
,
J.
,
2021
, “
Influence of Medium Viscosity on the Heating Power and the High-Frequency Magnetic Properties of Nanobeads Containing Magnetic Nanoparticles
,”
J. Magn. Magn. Mater.
,
518
, p.
167403
.10.1016/j.jmmm.2020.167403
29.
Soleimani
,
K.
,
Arkan
,
E.
,
Derakhshankhah
,
H.
,
Haghshenas
,
B.
,
Jahanban-Esfahlan
,
R.
, and
Jaymand
,
M.
,
2021
, “
A Novel Bioreducible and pH-Responsive Magnetic Nanohydrogel Based on β-Cyclodextrin for Chemo/Hyperthermia Therapy of Cancer
,”
Carbohydr. Polym.
,
252
, p.
117229
.10.1016/j.carbpol.2020.117229
30.
Yamaminami
,
T.
,
Ota
,
S.
,
Trisnanto
,
S. B.
,
Ishikawa
,
M.
,
Yamada
,
T.
,
Yoshida
,
T.
,
Enpuku
,
K.
, and
Takemura
,
Y.
,
2021
, “
Power Dissipation in Magnetic Nanoparticles Evaluated Using the AC Susceptibility of Their Linear and Nonlinear Responses
,”
J. Magn. Magn. Mater.
,
517
, p.
167401
.10.1016/j.jmmm.2020.167401
31.
Konopacki
,
M.
,
Jędrzejczak-Silicka
,
M.
,
Szymańska
,
K.
,
Mijowska
,
E.
, and
Rakoczy
,
R.
,
2021
, “
Effect of Rotating Magnetic Field on Ferromagnetic Structures Used in Hyperthermia
,”
J. Magn. Magn. Mater.
,
518
, p.
167418
.10.1016/j.jmmm.2020.167418
32.
Yang
,
R.
,
Yu
,
X.
,
Li
,
H.
,
Wang
,
C.
,
Wu
,
C.
,
Zhang
,
W.
, and
Guo
,
W.
,
2021
, “
Effect of Mg Doping on Magnetic Induction Heating of Zn–Co Ferrite Nanoparticles
,”
J. Alloys Compd.
,
851
, p.
156907
.10.1016/j.jallcom.2020.156907
33.
Monisha
,
P.
,
Priyadharshini
,
P.
,
Gomathi
,
S. S.
, and
Pushpanathan
,
K.
,
2021
, “
Influence of Mn Dopant on the Crystallite Size, Optical and Magnetic Behaviour of CoFe2O4 Magnetic Nanoparticles
,”
J. Phys. Chem. Solids
,
148
, p.
109654
.10.1016/j.jpcs.2020.109654
34.
Ghosh
,
M. P.
,
Datta
,
S.
,
Sharma
,
R.
,
Tanbir
,
K.
,
Kar
,
M.
, and
Mukherjee
,
S.
,
2021
, “
Copper Doped Nickel Ferrite Nanoparticles: Jahn-Teller Distortion and Its Effect on Microstructural, Magnetic and Electronic Properties
,”
Mater. Sci. Eng.: B
,
263
, p.
114864
.10.1016/j.mseb.2020.114864
35.
Ounacer
,
M.
,
Rabi
,
B.
,
Essoumhi
,
A.
,
Sajieddine
,
M.
,
Costa
,
B. F. O.
,
Emo
,
M.
,
Razouk
,
A.
, and
Sahlaoui
,
M.
,
2021
, “
Influence of Al3+ Substituted Cobalt Nano-Ferrite on Structural, Morphological and Magnetic Properties
,”
J. Alloys Compd.
,
854
, p.
156968
.10.1016/j.jallcom.2020.156968
36.
Mohammed
,
L.
,
Gomaa
,
H. G.
,
Ragab
,
D.
, and
Zhu
,
J.
,
2017
, “
Magnetic Nanoparticles for Environmental and Biomedical Applications: A Review
,”
Particuology
,
30
, pp.
1
14
.10.1016/j.partic.2016.06.001
37.
Adamo
,
C. B.
,
Poppi
,
R. J.
,
Jesus
,
D. P.
, and
de
,
2021
, “
Improving Surface-Enhanced Raman Scattering Performance of Gold-Modified Magnetic Nanoparticles by Using Nickel-Phosphorus Film on Polydimethylsiloxane
,”
Microchem. J.
,
160
, p.
105704
.10.1016/j.microc.2020.105704
38.
Kuan
,
W.-C.
,
Lai
,
J.-W.
, and
Lee
,
W.-C.
,
2021
, “
Covalent Binding of Glutathione on Magnetic Nanoparticles: Application for Immobilizing Small Fragment Ubiquitin-Like-Specific Protease 1
,”
Enzyme Microb. Technol.
,
143
, p.
109697
.10.1016/j.enzmictec.2020.109697
39.
Reyes-Rodríguez
,
P. Y.
,
Cortés-Hernández
,
D. A.
,
Ávila-Orta
,
C. A.
,
Sánchez
,
J.
,
Andrade-Guel
,
M.
,
Herrera-Guerrero
,
A.
,
Cabello-Alvarado
,
C.
, and
Ramos-Martínez
,
V. H.
,
2021
, “
Synthesis of Pluronic F127-Coated Magnesium/Calcium (Mg1-xCaxFe2O4) Magnetic Nanoparticles for Biomedical Applications
,”
J. Magn. Magn. Mater.
,
521
, p.
167518
.10.1016/j.jmmm.2020.167518
40.
Orives
,
J. R.
,
Viali
,
W. R.
,
Destro
,
F. B.
,
da Silva
,
S. W.
,
Ribeiro
,
S. J. L.
, and
Nalin
,
M.
,
2020
, “
Embedding CoPt Magnetic Nanoparticles Within a Phosphate Glass Matrix
,”
J. Alloys Compd.
,
848
, p.
156576
.10.1016/j.jallcom.2020.156576
41.
Nouri
,
M.
, and
Khodaiyan
,
F.
,
2020
, “
Green Synthesis of Chitosan Magnetic Nanoparticles and Their Application With Poly-Aldehyde Kefiran Cross-Linker to Immobilize Pectinase Enzyme
,”
Biocatal. Agric. Biotechnol.
,
29
, p.
101681
.10.1016/j.bcab.2020.101681
42.
Suriyanto
,
Ng
,
E. Y. K.
, and
Kumar
,
S. D.
,
2017
, “
Physical Mechanism and Modeling of Heat Generation and Transfer in Magnetic Fluid Hyperthermia Through Néelian and Brownian Relaxation: A Review
,”
Biomed. Eng. Online
,
16
(
1
), p.
36
.10.1186/s12938-017-0327-x
43.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
44.
Nabil
,
M.
,
Decuzzi
,
P.
, and
Zunino
,
P.
,
2015
, “
Modelling Mass and Heat Transfer in Nano-Based Cancer Hyperthermia
,”
R. Soc. Open Sci.
,
2
(
10
), p.
150447
.10.1098/rsos.150447
45.
Wissler
,
E. H.
,
1998
, “
Pennes' 1948 Paper Revisited
,”
J. Appl. Physiol. (Bethesda, Md. 1985)
,
85
(
1
), pp.
35
41
.10.1152/jappl.1998.85.1.35
46.
Roth
,
B.
,
2019
, “
Harry Pennes, Biological Physicist
,” Brad Roth, USA, accessed June 10, 2021, https://medium.com/@bradroth/harry-pennes-biological-physicist-10b9a791ff22
47.
Hristov
,
J.
,
2019
, “
Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches
,”
Front. Phys.
,
7
, p.
50801
.10.3389/fphy.2019.00189
48.
Tiari
,
S.
,
Mahdavi
,
M.
,
Chauhan
,
K.
, and
Piovesan
,
D.
,
2018
, “
Numerical Investigation of Heat Transfer in Tissues During Therapeutic Hyperthermia
,”
ASME
Paper No. IMECE2018-86485.10.1115/IMECE2018-86485
49.
Maenosono
,
S.
, and
Saita
,
S.
,
2006
, “
Theoretical Assessment of FePt Nanoparticles as Heating Elements for Magnetic Hyperthermia
,”
IEEE Trans. Magn.
,
42
(
6
), pp.
1638
1642
.10.1109/TMAG.2006.872198
50.
Chauhan
,
K.
,
Tiari
,
S.
, and
Mahdavi
,
M.
,
2018
, “
Numerical Study of Heat Transfer in Living Tissues During Hyperthermia Treatment of Cancer
,” Proceeding of Third Thermal and Fluids Engineering Conference (
TFEC
), Begellhouse, CT, Mar. 4–7, pp.
1127
1130
.10.1615/TFEC2018.bio.022013
51.
Ma
,
M.
,
Zhang
,
Y.
, and
Gu
,
N.
,
2018
, “
Estimation the Tumor Temperature in Magnetic Nanoparticle Hyperthermia by Infrared Thermography: Phantom and Numerical Studies
,”
J. Therm. Biol.
,
76
, pp.
89
94
.10.1016/j.jtherbio.2018.07.004
52.
Papadopoulos
,
C.
,
Efthimiadou
,
E. K.
,
Pissas
,
M.
,
Fuentes
,
D.
,
Boukos
,
N.
,
Psycharis
,
V.
,
Kordas
,
G.
,
Loukopoulos
,
V. C.
, and
Kagadis
,
G. C.
,
2020
, “
Magnetic Fluid Hyperthermia Simulations in Evaluation of SAR Calculation Methods
,”
Phys. Med.
,
71
, pp.
39
52
.10.1016/j.ejmp.2020.02.011
53.
Raouf
,
I.
,
Khalid
,
S.
,
Khan
,
A.
,
Lee
,
J.
,
Kim
,
H. S.
, and
Kim
,
M.-H.
,
2020
, “
A Review on Numerical Modeling for Magnetic Nanoparticle Hyperthermia: Progress and Challenges
,”
J. Therm. Biol.
,
91
, p.
102644
.10.1016/j.jtherbio.2020.102644
54.
Sefidgar
,
M.
,
Bashooki
,
E.
, and
Shojaee
,
P.
,
2020
, “
Numerical Simulation of the Effect of Necrosis Area in Systemic Delivery of Magnetic Nanoparticles in Hyperthermia Cancer Treatment
,”
J. Therm. Biol.
,
94
, p.
102742
.10.1016/j.jtherbio.2020.102742
55.
Suleman
,
M.
, and
Riaz
,
S.
,
2020
, “
In Silico Study of Hyperthermia Treatment of Liver Cancer Using Core-Shell CoFe2O4@MnFe2O4 Magnetic Nanoparticles
,”
J. Magn. Magn. Mater.
,
498
, p.
166143
.10.1016/j.jmmm.2019.166143
56.
Alberti
,
M.
, and
Prina-Mello
,
A.
,
2020
, “
Smart Model of Intrinsic Loss Power of SPIONs in Hyperthermia Treatment
,”
J. Magn. Magn. Mater.
,
502
, p.
166493
.10.1016/j.jmmm.2020.166493
57.
Dutta
,
J.
, and
Kundu
,
B.
,
2018
, “
Two-Dimensional Closed-Form Model for Temperature in Living Tissues for Hyperthermia Treatments
,”
J. Therm. Biol.
,
71
, pp.
41
51
.10.1016/j.jtherbio.2017.10.012
58.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
C. R.
,
247
, pp.
431
433
.https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1370936
59.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de l′Equation de la Chaleur
,”
C. R.
,
246
, pp.
3154
3155
.https://ci.nii.ac.jp/naid/10030921023/
60.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2015
, “
Analytical Study on the Transient Heating of a Two-Dimensional Skin Tissue Using Parabolic and Hyperbolic Bioheat Transfer Equations
,”
Appl. Math. Modell.
,
39
(
13
), pp.
3704
3720
.10.1016/j.apm.2014.12.003
61.
Yang
,
C.-y.
,
2014
, “
Boundary Prediction of Bio-Heat Conduction in a Two-Dimensional Multilayer Tissue
,”
Int. J. Heat Mass Transfer
,
78
, pp.
232
239
.10.1016/j.ijheatmasstransfer.2014.06.071
62.
Bermeo Varon
,
L. A.
,
Barreto Orlande
,
H. R.
, and
Eliçabe
,
G. E.
,
2015
, “
Estimation of State Variables in the Hyperthermia Therapy of Cancer With Heating Imposed by Radiofrequency Electromagnetic Waves
,”
Int. J. Therm. Sci.
,
98
, pp.
228
236
.10.1016/j.ijthermalsci.2015.06.022
63.
Boroon
,
M. P.
,
Ayani
,
M.-B.
, and
Bazaz
,
S. R.
,
2018
, “
Estimation of the Optimum Number and Location of Nanoparticle Injections and the Specific Loss Power for Ideal Hyperthermia
,”
J. Therm. Biol.
,
72
, pp.
127
136
.10.1016/j.jtherbio.2018.01.010
64.
Reis
,
R. F.
,
Loureiro
,
F. S.
, and
Lobosco
,
M.
,
2014
, “
A Parallel 2D Numerical Simulation of Tumor Cells Necrosis by Local Hyperthermia
,”
J. Phys. Conf. Ser.
,
490
, p.
012138
.10.1088/1742-6596/490/1/012138
65.
Bagaria
,
H. G.
, and
Johnson
,
D. T.
,
2005
, “
Transient Solution to the Bioheat Equation and Optimization for Magnetic Fluid Hyperthermia Treatment
,”
International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology, North Am. Hyperthermia Group
,
21
(
1
), pp.
57
75
.10.1080/02656730410001726956
66.
Reis
,
R. F.
,
Loureiro
,
F. D. S.
, and
Lobosco
,
M.
,
2016
, “
3D Numerical Simulations on GPUs of Hyperthermia With Nanoparticles by a Nonlinear Bioheat Model
,”
J. Comput. Appl. Math.
,
295
, pp.
35
47
.10.1016/j.cam.2015.02.047
67.
Mohajer
,
M.
,
Ayani
,
M. B.
, and
Tabrizi
,
H. B.
,
2016
, “
Numerical Study of Non-Fourier Heat Conduction in a Biolayer Spherical Living Tissue During Hyperthermia
,”
J. Therm. Biol.
,
62
(
Pt B
), pp.
181
188
.10.1016/j.jtherbio.2016.06.019
68.
Bellizzi
,
G.
,
Bucci
,
O. M.
, and
Chirico
,
G.
,
2016
, “
Numerical Assessment of a Criterion for the Optimal Choice of the Operative Conditions in Magnetic Nanoparticle Hyperthermia on a Realistic Model of the Human Head
,”
International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology, North Am. Hyperthermia Group
,
32
(
6
), pp.
688
703
.10.3109/02656736.2016.1167258
69.
Tang
,
Y.-D.
,
Flesch
,
R. C. C.
,
Zhang
,
C.
, and
Jin
,
T.
,
2018
, “
Numerical Analysis of the Effect of Non-Uniformity of the Magnetic Field Produced by a Solenoid on Temperature Distribution During Magnetic Hyperthermia
,”
J. Magn. Magn. Mater.
,
449
, pp.
455
460
.10.1016/j.jmmm.2017.10.076
70.
Wu
,
L.
,
Cheng
,
J.
,
Liu
,
W.
, and
Chen
,
X.
,
2015
, “
Numerical Analysis of Electromagnetically Induced Heating and Bioheat Transfer for Magnetic Fluid Hyperthermia
,”
IEEE Trans. Magn.
,
51
(
2
), pp.
1
4
.10.1109/tmag.2014.2358268
71.
Liu
,
K.-C.
, and
Cheng
,
P.-J.
,
2019
, “
Numerical Analysis of Power Dissipation Requirement in Magnetic Hyperthermia Problems
,”
J. Therm. Biol.
,
86
, p.
102430
.10.1016/j.jtherbio.2019.102430
72.
Lin
,
C.-T.
, and
Liu
,
K.-C.
,
2009
, “
Estimation for the Heating Effect of Magnetic Nanoparticles in Perfused Tissues
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
241
244
.10.1016/j.icheatmasstransfer.2008.11.006
73.
Pearce
,
J. A.
,
Cook
,
J. R.
,
Hoopes
,
P. J.
, and
Giustini
,
A.
,
2011
, “
FEM Numerical Model Study of Heating in Magnetic Nanoparticles
,”
Proceedings of SPIE–the International Society for Optical Engineering
, San Francisco, CA, Jan. 22–27, Vol.
7901
, pp.
1
9
.10.1117/12.875288
74.
Tang
,
Y.
,
Flesch
,
R. C. C.
, and
Jin
,
T.
,
2017
, “
Numerical Analysis of Temperature Field Improvement With Nanoparticles Designed to Achieve Critical Power Dissipation in Magnetic Hyperthermia
,”
J. Appl. Phys.
,
122
(
3
), p.
034702
.10.1063/1.4994309
75.
Adhikary
,
K.
, and
Banerjee
,
M.
,
2016
, “
A Thermofluid Analysis of the Magnetic Nanoparticles Enhanced Heating Effects in Tissues Embedded With Large Blood Vessel During Magnetic Fluid Hyperthermia
,”
J. Nanopart.
,
2016
(
7
), pp.
1
18
.10.1155/2016/6309231
76.
Suleman
,
M.
, and
Riaz
,
S.
,
2020
, “
3D in Silico Study of Magnetic Fluid Hyperthermia of Breast Tumor Using Fe3O4 Magnetic Nanoparticles
,”
J. Therm. Biol.
,
91
, p.
102635
.10.1016/j.jtherbio.2020.102635
77.
Raouf
,
I.
,
Lee
,
J.
,
Kim
,
H. S.
, and
Kim
,
M.-H.
,
2021
, “
Parametric Investigations of Magnetic Nanoparticles Hyperthermia in Ferrofluid Using Finite Element Analysis
,”
Int. J. Therm. Sci.
,
159
, p.
106604
.10.1016/j.ijthermalsci.2020.106604
78.
Osaci
,
M.
, and
Cacciola
,
M.
,
2021
, “
About the Influence of the Colloidal Magnetic Nanoparticles Coating on the Specific Loss Power in Magnetic Hyperthermia
,”
J. Magn. Magn. Mater.
,
519
, p.
167451
.10.1016/j.jmmm.2020.167451
79.
Gunakala
,
S. R.
,
Job
,
V. M.
,
Sakhamuri
,
S.
,
Murthy
,
P. V. S. N.
, and
Chowdary
,
B. V.
,
2021
, “
Numerical Study of Blood Perfusion and Nanoparticle Transport in Prostate and Muscle Tumours During Intravenous Magnetic Hyperthermia
,”
Alexandria Eng. J.
,
60
(
1
), pp.
859
876
.10.1016/j.aej.2020.10.015
You do not currently have access to this content.